M2 ISN – Chaînes de Markov et modélisation

Responsable: Adrien Hardy, email: adrien.hardy@univ-lille.fr

TP2 – Metropolis-Hastings pour le modèle d'Ising

On pose $\Lambda_N := \{1, \dots, N\} \times \{1, \dots, N\}$ et on veut simuler une configuration $\sigma \in E_N := \{-1, 1\}^{\Lambda_N}$ de loi la mesure de Gibbs

$$\mu_{\beta}(\sigma) := \frac{1}{Z_{\beta}} e^{-\beta H(\sigma)}$$

avec

$$H(\sigma) := -\sum_{x \sim y} \sigma_x \sigma_y, \qquad Z_{\beta} := \sum_{\sigma \in E_N} e^{-\beta H(\sigma)}.$$

Pour ce faire, on propose d'utiliser l'algorithme de Metropolis-Hastings.

On considère la chaîne de Markov de matrice de transition Q qui, à une configuration $\sigma \in E_N$ change un signe $\sigma_x \to -\sigma_x$ d'un site $x \in \Lambda_N$ tiré au hasard uniformément.

- 1. Ecrire un algorithme qui prend en entrée $N \geq 1$, $\beta > 0$, une configuration initiale $\sigma_0 \in E$ et un nombre N_{step} et qui renvoie une représentation graphique bicolore de la configuration obtenue après N_{step} étapes de l'algorithme de Metropolis-Hastings de proposition Q partant de σ_0 .
- 2. Combien d'étapes de la chaîne Q faut-il en moyenne pour changer tous les signes de σ_0 au moins une fois ?
- 3. Il est dit en physique qu'il y a une transition de phase autour du seuil critique $\beta = \log(1 + \sqrt{2})/2$. Qu'observez-vous ?
- 4. Pour accélérer la convergence de la chaîne de Markov, on peut utiliser d'autres matrices de transition Q. Essayez-en d'autres qui changent plus d'un signe à la fois. Demander à l'algorithme ci-dessus de renvoyer en plus le taux d'acceptation pour comparer les méthodes.

Aide: donner une condition sur deux sites pour que le changement de signe d'un site n'ait aucun impact sur le signe de l'autre.