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Overview

To pass the habilitation à diriger de recherches (HDR) is the final initiation
rite in the French academic system, where the candidate has to summarize her/his
post-PhD research production in a pedagogical manner. I’ve heard this is a good
opportunity to take some distance from the initial motivations, to draw the “big
picture”. From this perspective I realized that the choice for my research projects
were always guided by the motivation to learn new mathematics, specially when
they have a potential for concrete applications or for a better understanding of
physical systems. These research projects also had in common one feature: they
involve interacting particle systems of repulsive nature, that I all find quite elegant
and attractive. This repulsive feature has for consequence rather counterintuitive
properties for the unaware probabilist. Some of my papers are about understanding
better these particle systems, some of them are about using them for applications.
One can split such interacting systems into two classes, determinantal point pro-
cesses (DPPs) and Coulomb gases, although they have a non-empty intersection
and overflow on other interesting classes, such as random matrices or Gaussian an-
alytic functions, which will show up here and there.

After a brief teaser, Chapter 1 presents the necessary background for the re-
pulsive particle systems of interest, including a quick presentation of the works
summarized in this thesis, as well as the general notation. Then, the manuscript is
split into two parts: Chapters 2, 3, 4 deal with DPPs whereas the chapters 5, 6, 7, 8
focus on Coulomb gases.

In order to keep the size of this manuscript at its minimum, the presentation
focus on the scientific contributions from my coauthors and I, and the reader may
complain about the lack of general references, but we refer her/him to the published
works associated to each chapter for further information.

Moreover, the joint work [P14] with Walid Hachem and Shlomo Shamai, which
explains how the stationary measure of a well chosen matrix valued process is useful
for computing the Shannon mutual information for a large class of multi-antenna
channel models in wireless communication, is not reviewed in this thesis since it is
too far from DPPs and Coulomb gases.
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Chapter 1

Introduction & background

This chapter aims at a short and pedagogical presentation on determinantal point
processes and Coulomb gases, including an overview of the works that will be de-
tailed in the next chapters.

As an appetizer we start with an inspirational particle system known as the
CUE, to which all forthcoming models and results can be related to. Some of the
notation and concepts we use here will be detailed in Section 1.2 below.

1.1 A central uplifting example: The CUE
Consider the unitary group UN(C) of N ×N complex unitary matrices and equip it
with its normalized Haar measure ν, that is the unique probability measure on UN(C)
which is invariant under left and right multiplication. If we denote by eix1 , . . . , eixN

the eigenvalues of a random unitary matrix with distribution ν, a result attributed to
Weyl♠ yields that the joint law of the phases x1, . . . ,xN living on the one-dimensional
torus T := (−π, π] ' R/2πZ has a density proportional to

∏
1≤i<j≤N

∣∣∣eixi − eixj
∣∣∣2. (1.1)

The particle system (xj)Nj=1 is known as the Circular Unitary Ensemble (of size N),
abbreviated CUE or CUE(N) in the following.

Macroscopic behavior. At the global level, the CUE(N) is uniformly distributed
on T on average, i.e. the empirical measure µ̂N := 1

N

∑N
j=1 δxj has mean Eµ̂N = dx

2π .
More precisely, since UN(C) is a Riemannian manifold with explicit Ricci curvature
one can use Backry-Émery or Gromov-Milman approach to concentration inequal-
ities to obtain sub-Gaussian concentration in the Wasserstein W1 metric [Meckes
♠Diaconis and Forrester [2017] notice this result can be traced back to [Hurwitz, 1897], the

oldest known fossil of embryonic random matrix theory.
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and Meckes, 2013]: there exists c > 0 such that, for every N ≥ 1 and r > 0,

PCUE

(
W1(µ̂N , dx

2π ) ≥ r
)
≤ e−cN2r2

. (1.2)

What may be surprising to the probabilist reader is the rate N2 instead of N ,
which would be the correct rate for N independent and identically distributed (i.i.d)
uniform random variables on T. Thus, as N → ∞, the CUE(N) converges globally
to the uniform measure much faster than i.i.d uniform random variables would,
underlying fluctuations of much smaller order. The reason for this phenomenon is
the repulsion between the particles of the CUE, which is clearly seen from the form of
the density (1.1). In fact, Johansson [1988] noticed that the strong Szegö theorem,
which establishes second order asymptotics for large Toeplitz determinants, can be
recast into a central limit theorem (CLT) for the CUE: given any H1/2-smooth test
function f : T→ R, we have

N
∫
f
(
dµ̂N − dx

2π

) law−−−→
N→∞

N (0, σ2
f ) (1.3)

where σf is the H1/2-Sobolev seminorm of f . In particular the fluctuations have
standard deviation 1/N , which should be compared to 1/

√
N in the setting of inde-

pendent random variables.

Microscopic considerations. At the microscopic level, namely at a scaling where
the typical distance between the particles is of order one, the CUE(N) converges as
N →∞ towards a universal object called the Sine2 process. More precisely, for any
x ∈ T the point process (N(xj − x))Nj=1 has a weak limit as N →∞ which one can
describe precisely. The simplest way to do so is to notice that (1.1) is the square of
a Vandermonde determinant and thus can be written as

det
[
KN(xi, xj)

]N
j,k=1

(1.4)

for a kernel KN associated with a finite rank N projection operator. This structure
remains unchanged after the change of variables (xj)Nj=1 7→ (N(xj − x))Nj=1 but with
a new kernel K̃N that converges locally uniformly as N →∞ to the limiting kernel

KSine(x, y) = sin(π(x− y))
π(x− y) . (1.5)

� The particular structure (1.4) is an occurence of what is called a determinantal
point process (DPP), a class of point processes that will be the main topic of the
first part of this thesis; DPPs are introduced in Section 1.3.
� Using the statistical physics formalism, one could alternately write (1.1) as a

canonical ensemble e−βHN at inverse temperature β = 2 for an energy functional
HN that is the sum over the pair potentials log |eixi − eixj |−1, which turns out to
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be the Coulomb potential describing two-dimensional electrostatics. From this per-
spective, the CUE is a particular case of (the restriction of) a Coulomb gas, a class
of particle systems that will be the main character of the second part of this thesis
and introduced in Section 1.4.

1.2 General notation & conventions
- In what follows and without further precision, Λ refers to an arbitrary Polish
space with a distance d, and a “measure” always means a Borel measure for
the topology coming with this distance.

- We denote the Lipschitz constant of a Lipschitz function f : Λ→ C by

‖f‖Lip := sup
x,y∈Λ
x 6=y

|f(x)− f(y)|
d(x, y) .

- For f : T→ C in L2, we denote by f̂k :=
∫
T f(x) e−ikx dx

2π its Fourier coefficients
and introduce, for any s > 0, its Hs-Sobolev seminorm

‖f‖Hs :=
√∑
k∈Z
|k|2s|f̂k|2.

- P(Λ) stands for the set of probability measures on Λ, which is always equipped
with its weak topology coming by duality with the bounded continuous func-
tions on Λ. This topology is metrizable, for instance by the bounded Lipschitz
(or Fortet-Mourier) distance

dBL(µ, ν) := sup
‖f‖Lip≤1
‖f‖∞≤1

∫
f(x)(µ− ν)(dx). (1.6)

We also consider, for any p ≥ 1, the stronger♠ topologies associated with the
Kantorovich/Wasserstein distance of order p

Wp(µ, ν) :=
(

inf
∫∫

d(x, y)pπ(dx, dy)
)1/p

, (1.7)

where the infimum ranges over the probability measures π ∈ P(Λ × Λ) with
respective marginal distributions µ and ν. If X, Y are random variables with
respective laws µX , µY , we also set for convenience Wp(X, Y ) := Wp(µX , µY ).

♠W1 dominates dBL since the Kantorovich-Rubinstein dual representation of W1 states that

W1(µ, ν) = sup
‖f‖Lipf≤1

∫
f(x)(µ− ν)(dx).
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- The relative entropy of µ ∈ P(Λ) with respect to ν ∈ P(Λ) is defined by

H(µ|ν) :=
∫ dµ

dν log dµ
dν dν

when µ is absolutely continuous with respect to ν and set to +∞ otherwise.

- Conf(Λ) stands for the set of (simple) point configurations on Λ, that is the
locally finite subsets of Λ. One can identify a point configuration with its
counting measure on Λ so that we can make Conf(Λ) a Polish space, when
equipped with the weak topology coming by duality with the continuous func-
tions having compact support. Finally, a point process on Λ is a probability
measure on Conf(Λ).

- The empirical measure µ̂N is defined by µ̂N := 1
N

∑N
j=1 δxj for an associated

point process (xj)Nj=1 of a.s. N points that should be clear from the context.
Its expectation Eµ̂N is defined by duality,

∫
f dEµ̂N := E

∫
fdµ̂N . We say that

µ̂N converges almost surely (a.s) to µ when, in any joint probability space, we
have the weak convergence µ̂N → µ with probability one. Note that this strong
form of almost sure convergence is sometimes called complete convergence.

- NC(0, σ2) refers to the law of a centered complex Gaussian variable with vari-
ance σ2, namely of Z := σ(X + iY )/

√
2 with X, Y i.i.d standard N (0, 1)

variables; note that the
√

2 is here to have Var(Z) := E|Z|2 − |E(Z)|2 = σ2.

1.3 Determinantal point processes
We now provide some background material on determinantal point processes (DPPs)
as a preparation for the three next chapters.

DPPs have been initially popularized in statistical and mathematical physics, in
relation with random matrix models and Fermionic systems from quantum physics.
They indeed became famous particle systems when it has been understood that
there are several instances of DPPs arising as universal microscopic limits for many
unrelated particle systems, drawing the contours of a new universality class.

Another singular feature of DPPs is that most analytic quantities admit a closed
formula in terms of the correlation kernel, allowing tractable computations and
asymptotics (at least, in principle, and with enough bravery). Since exact sampling
algorithms are available, DPPs thus yield a handy tool to model and use repulsive
phenomena in applied mathematics.

Projection kernels. Let us fix some Polish space Λ with a reference measure µ.
For our purpose it is enough♦ to consider DPPs on Λ associated with projection
♦All the DPPs that appear here are associated with projection kernels. More generally one

could consider DPPs with contraction kernels, but they can always be represented as a statistical
mixture of projection kernel DPPs.
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kernel only, namely kernels K : Λ× Λ→ C satisfying∫
K(x, u)K(u, y)µ(du) = K(x, y), x, y ∈ Λ. (1.8)

If we see K as an operator acting on L2(µ), that is Kf(x) :=
∫
K(x, y)f(y)µ(dy)

and assume reasonable conditions on K(x, y) for K to map L2(µ) onto itself, then
the condition (1.8) indeed yields that K is a projection operator. If we denote by
N ∈ N ∪ {∞} the rank of the projection K and assume that it is Hermitian, then
one can look for kernels of the form

K(x, y) =
N∑
k=1

ϕk(x)ϕk(y) (1.9)

for some orthonormal family (ϕk) of L2(µ).

DPPs with finite rank projection kernel. A DPP on Λ with finite rank pro-
jection kernel K is a point process of a.s. N := rank(K) points x1, . . . ,xN on Λ
with joint probability distribution

dP(x1, . . . , xN) = 1
N ! det

[
K(xi, xj)

]N
i,j=1

N∏
j=1

µ(dxj). (1.10)

We implicitly (and will always) assume the kernel is positive definite so that P
is indeed a positive (probability) measure. Note that this is always the case for
Hermitian kernels (1.9).

For example, the CUE(N) is a DPP on the one-dimensional torus T with reference
measure µ = dx

2π and rank N Hermitian projection kernel (1.9) with ϕk(x) = eikx.

Correlation functions and infinite rank projections. By expanding the de-
terminant in (1.10), integrating out the N − k last variables for some 0 ≤ k < N
and using (1.8), we obtain the identity

1
(N − k)!

∫
ΛN−k

P(x1, . . . , xk, dxk+1, . . . , dxN) = det
[
K(xi, xj)

]k
i,j=1

. (1.11)

This yields that, for any nice test function ϕ : Λk → R,

E

 ∑
i1 6=···6=ik

ϕ(xi1 , . . . ,xik)
 =

∫
Λk
ϕ(x) ρk(x)µ⊗k(dx) (1.12)

where we introduced

ρk(x1, . . . , xk) := det
[
K(xi, xj)

]k
i,j=1

, (1.13)

the so-called k-th correlation function of the point process x1, . . . ,xN .
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When one considers an infinite rank projection kernel K, for which the defini-
tion (1.10) does not make sense anymore, a DPP is then defined as the point process
uniquely characterized by the correlation functions given in (1.13) for all k ≥ 1. Such
a DPP yields infinite point configurations a.s.

An example is the Sine2 process, which is the DPP on R with Lebesgue reference
measure and infinite rank symmetric projection kernel KSine introduced in (1.5).

The hyperbolic GAF. In general, discovering a determinantal structure for some
point process of interest is like finding a precious stone, or at least the promise to
realize every computations you ever dreamed of for this model. One example lies in
the study of invariant Gaussian analytic functions (GAFs), that are random analytic
functions f such that (f(z1), . . . , f(zm)) is complex Gaussian vector for every m ≥
0 and every z1, . . . , zm ∈ Λ for some definition domain Λ ⊂ C. The so-called
planar, hyperbolic and spherical GAFs are defined as the three unique one-parameter
families of GAFs (up to the multiplication by a non-vanishing analytic function)
whose distribution of their roots is invariant under the isometry of the complex
plane C, the hyperbolic/Poincaré disk D, and the Riemann sphere S respectively
[Hough et al., 2009]. An explicit formula exists for the these invariant GAFs, and it
has the form

GAF(z) =
∞∑
k=0

√
ck
k! ξk z

k, z ∈ Λ, (1.14)

where (ξk) is a sequence of i.i.d NC(0, 1) random variables; the definition domain Λ
and the deterministic sequence (ck) is specified in the following table.

Isometries Domain Λ ck Parameter
C C `k ` > 0
D |z| < 1 Γ(k + α + 1) α > −1
S C N(N − 1) · · · (N − k + 1)1k≤N N ∈ N∗

A beautiful result of Peres and Virág [2005] is that the point process on the unit disk
given by the zeros of the hyperbolic GAF with parameter α = 0 is determinantal
with Lebesgue reference measure and infinite rank projection Hermitian kernel

KD(x, y) := 1
π(1− xy)2 , (1.15)

which is the reproducing kernel for the Bergman space A2(D).

In Chapter 2 we will see how invariant GAFs, and in particular the hyperbolic
one, show up in signal processing in relation to the denoising problem. This opens
a door for new denoising algorithms based on this determinantal structure.
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Hyperuniform estimators. If we set for convenience

XN
f :=

N∑
j=1

f(xj) (1.16)

for a point process x1, . . . ,xN , then (1.3) states that Var[XN
f ] = O(1) for the CUE

provided that f is smooth enough. This should be compared to the O(N) order
variance in the setting of i.i.d random variables. From this perspective one can say
that the CUE is a hyperuniform♠ point process. Let us stress that hyperuniform
particle systems have a huge potential for applications, since the variance of esti-
mators is often synonymous of precision error, and it is thus natural to wonder if
DPPs can provide a handy class of such hyperuniform point processes.

For a general DPP x1, . . . ,xN with projection kernel KN and reference measure
µ on Λ, equations (1.12)–(1.13) with k = 1 and k = 2 yield together

Var[XN
f ] =

∫
|f(x)|2KN(x, x)µ(dx)−

∫∫
f(x)f(y)KN(x, y)KN(y, x)µ(dx)µ(dy)

(1.17)
for every reasonable function f : Λ → C. If the particles are scaled so that their
macroscopic limit is non-trivial, then the leftmost integral is of order N and thus we
must design KN such that the rightmost integral is at least of order N to achieve
hyperuniformity.

In Chapter 3 we provide a class of hyperuniform DPPs on the hypercube [−1, 1]d
for every dimension d ≥ 1, constructed by means of multivariate orthogonal polyno-
mials. We illustrate how this can be of interest for numerical integration.

Sampling projection DPPs. A nice feature of DPPs with rank N projection
Hermitian kernels is that an exact sampling algorithm is available, see [Hough et al.,
2009]. A modest contribution made in [P10] is a quick way to derive this algorithm
that doesn’t require the kernel K to be Hermitian: consider the mean probability
distribution

η1(dx1) := 1
N
K(x1, x1)µ(dx1) (1.18)

and the conditional distributions defined, for 1 ≤ k < N and x1, . . . , xk ∈ Λ, by

ηk+1(dxk+1|x1, . . . , xk) := 1
N − k

det
[
K(xi, xj)

]k+1

i,j=1

det
[
K(xi, xj)

]k
i,j=1

µ(dxk+1). (1.19)

♠The notion of hyperuniformity is usually defined at the microscopic scale [Torquato, 2016]: a
point process on infinite configurations on Rd is hyperuniform when the variance of the number of
particles in a box [−L,L]d is of smaller order than the volume Ld of that box, which is the variance
for a Poisson process, as L→∞. Up to a smoothing of the characteristic function of that box, the
macroscopic analog for the definition of hyperuniformity is thus to say that, for a point process
x1, . . . ,xN on Rd scaled such that Eµ̂N has a non-trivial large N limit, we have Var[XNf ] = o(N)
as N →∞ for f a (smooth) indicator function of a compact set.
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Using the Schur determinant identity yields a formula for the density of ηk+1(dx|x1, . . . , xk)
with respect to µ(dx) that is cheaper to implement, given by

1
N − k

K(x, x)−


K(x, x1)

...
K(x, xk)


T ([

K(xi, xj)
]k
i,j=1

)−1

K(x1, x)

...
K(xk, x)


 . (1.20)

By integrating (1.20) against µ(dx) and using (1.8), we see the ηk’s are indeed
probability measures. Since (1.18)–(1.19) clearly yield for P as in (1.10),

dP(x1, . . . , xN) = η1(dx1)
N∏
k=2

ηk(dxk|x1, . . . , xk−1),

sampling x1, . . . ,xN from P thus amounts to sample x1 with distribution η1, then
x2 with distribution η2( · |x1), then x3 with distribution η3( · |x1,x2), etc. This chain
rule is the same as the one of [Hough et al., 2009], see [P8, Section 2.4].

Note that, by positivity of the kernel, if K is Hermitian then (1.20) is bounded
from above by 1

N−kK(x, x), making the use of rejection sampling possible to sample
from the ηk’s once one knows how to sample from the mean distribution η1. Thus,
together with the matrix inversion in (1.20), to sample from a rank N projection
kernel DPP costs O(N3) plus N rejection sampling steps. If K is not Hermitian,
the rejection sampling step is more tricky and depends on the model.

Let us mention the very nice library DPPy developed for Python by Gautier et al.
[2019], which includes several sampling algorithms for DPPs and matrix models.

1.4 Coulomb gases
Another interesting class of repulsive particle systems are the Coulomb and log-
gases, which represent canonical models in statistical physics for particle systems in
electrostatic interaction.

Coulomb law. Electrostatics is the physical phenomena that makes cat’s fur spiky
when you rub amber against it. Since the ancient greek word for amber is “élektron”,
at least the ancient Greeks understood it was more a property of amber stones than of
cats. Charles-Augustin Coulomb was however able quantify in 1784, using an electric
torsion balance, the repulsion force between two charged objects: its amplitude is
decaying as their squared distance (Coulomb’s law)♥, exactly like the gravitational
attraction. Using the apparent isotropy of electrostatic interaction, this yields that
the repulsion force created by a unit charge at 0 ∈ R3 felt by another unit charge at
x ∈ R3 equals to

~F = x

|x|3

♥To be fair to the ancient Greeks, in his first memoir Coulomb made two experiments and
then concluded, with 8% error, that “la force répulsive de deux petits globes électrisés de la même
nature d’électricité est en raison inverse du carré de la distance du centre des deux globes.”
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up to a multiplicative constant. This force derives from the potential g(x) = |x|−1

in the sense that ~F = ∇g(x). In particular, the energy of a system of N unit charges
at positions x1, . . . , xN ∈ R3 in presence of an external potential V : R3 → R reads

HN(x1, . . . , xN) =
∑
i<j

g(xi − xj) +
N∑
j=1

V (xj). (1.21)

The potential V is here to model an external interaction with the system of charges.

Canonical ensembles and Coulomb gas on R3. Given an energy functional
(or Hamiltonian)H : Rn → R∪{+∞} and a constant C ∈ (inf H, supH), the micro-
canonical ensemble refers in statistical physics to the probability distribution P on
Rn that maximizes its Shannon entropy EP[log dP

dx ] within the probability measures
having a given mean energy EP[H] = C; it thus represents the state of a physical
system at a given energy level with no extra symmetry/information. The solution of
this optimization problem is unique for reasonable energies H and its density reads
1
Zβ

e−βH for some β > 0, where the so-called partition function Zβ > 0 is a normal-
isation constant. The parameter β is interpreted as the inverse temperature of the
system and there is a one-to-one correspondance between the constant energy value
C and β. Using the dual formulation for this variational problem, its solution also
minimizes the functional P 7→ EP[H] +βEP[log dP

dx ], whose minimizer is rather called
canonical ensemble in statistical physics. In the following, we thus refer to 1

Zβ
e−βH

as the canonical ensemble associated with the energy H at inverse temperature β.
The Coulomb gas is defined as the canonical ensemble associated with the energy

(1.21) of N unit charges interacting according to the Coulomb law in an external
potential V .

Coulomb potential/gas on Rd. Alternately, in the spirit of the local form of
Gauss law, one can recover the potential g(x) = |x|−1 by solving the Poisson equation

∆g = −4πδ0

in the space of Schwarz distributions on R3. By extension, the Coulomb potential g
of the Euclidean space Rd is defined for any d ≥ 2 by

g(x) :=


log 1
|x|

if d = 2,

1
|x|d−2 if d ≥ 3,

(1.22)

since one can check that it satisfies the equation

∆g = −cd δ0 (1.23)
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where cd is a positive constant given by

cd :=

2π if d = 2,
(d− 2)Vol(Sd−1) if d ≥ 3,

with Vol(Sd−1) := 2πd/2
Γ(d/2) .

The Coulomb gas on Rd is then defined as the canonical ensemble associated
with the energy (1.21) where g is now replaced by the Coulomb potential of Rd and
V : Rd → R is an appropriate external potential. It should be noticed that the
Coulomb gas is a repulsive particle system since the energy (1.21) becomes arbi-
trary high when two particles get closer, due to the singularity of g at zero, and
configurations with high energy are unlikely by definition of the canonical ensemble.

We will study the large N limit of the empirical measure µ̂N for such Coulomb
gases in Chapter 5. More precisely, we explain how to derive fast concentration in-
equalities in the spirit of (1.2) for µ̂N around the equilibrium measure of the system,
thanks to a Coulomb analog of the Talagrand transportation inequality (T1).

Coulomb potential on a compact manifold. We could also extend the def-
inition of the Coulomb potential/gas to any Riemannian manifold M , where the
Laplace-Beltrami operator replaces the usual Laplacian ∆. Note however that we
have lost in general the translation invariance of the ambiant space. Moreover, the
analog of the Poisson equation ∆g = −δx for any fixed x ∈ M has no solution
when the manifold is compact (since 1 ∈ C∞c (M)). This problem can be however
tackled by adding a uniformly charged neutralizing background, that is to look for
a so-called Green function g(x, y) which is symmetric and satisfies ∆g(x, ·) = σ− δx
in distributions for every x ∈M , where σ is the uniform probability measure on M .
For instance, if M = S is the unit sphere of R3 then the Green function is given by
g(x, y) ∝ log ‖x− y‖−1, where ‖ · ‖ stands for the Euclidean norm of R3. For higher
dimensional spheres and higher complex projective spaces there are closed formulas
but they are more involved [Beltrán et al., 2019]. However, for general compact
manifolds the Green function g(x, y) behaves like its Euclidean analog as y → x.

As in Rd, one can define the Coulomb gas on a compact Riemannian manifold
by taking the canonical ensemble associated with the Coulomb energy (1.21) after
replacing “g(xi − xj)” in its expression by the Green function g(xi, xj) and some
potential V : M → R.

In Chapter 6 we quantify how much the Coulomb gas on the sphere S can provide
well-spaced points depending on the temperature. More precisely, we show that in
the low temperature regime β ∼ N the N particles of the Coulomb gas on the sphere
have minimal Coulomb energy up to a logN error, which is the precision required
in Smale’s 7th problem, with exponentially high probability.

Restriction of Coulomb gases to lower dimensional spaces. Another canon-
ical ensemble popularized by random matrix theory is the log-gas, which a two-
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dimensional Coulomb gas restricted to a one dimensional subset. For instance,
given β > 0, the Gaussian-β-Ensemble (GβE) refers to the N particles on R with
distribution

1
ZN,β

∏
1≤i<j≤N

|xi − xj|β
N∏
j=1

e−Nβx2
j/4dxj . (GβE)

When β = 1 (resp. β = 2, resp. β = 4), this is the joint eigenvalue distribution
induced by the standard Gaussian measure on the real vector space of N × N
symmetric (resp. complex Hermitian, resp. quaternionic Hermitian) matrices.

Another interesting example is the CUE (again), which turns out to match with
the restriction of the Coulomb gas of the 2-torus T × T (seen as a Riemannian
submanifold of R3) with no potential at inverse temperature β = 2 restricted to
T ' T × {0} [Borodin and Serfaty, 2013]. Similarly, the canonical ensemble on T
obtained by this restriction at arbitrary inverse temperature β > 0 is called the
Circular-β-Ensemble (CβE) and is given by

1
ZN,β

∏
1≤i<j≤N

|eixi − eixj |β
N∏
j=1

dxj
2π . (CβE)

It turns out the CLT (1.3) also holds true for any fixed β > 0, with the same
small order fluctuations. However, this breaks down at β = 0 where we recover the
setting of i.i.d uniform random variables on T, where the classical CLT holds instead.

In Chapter 7 we describe a transition that arise in the high temperature regime
β ∼ 1/N , where we establish a CLT with a limiting variance that interpolates be-
tween the fixed temperature setting (H1/2) and the i.i.d setting (L2).

At the microscopic level, we have seen that the CUE, or C2E, converges to the
Sine2 point process which is completely characterized by being the DPP with kernel
KSine defined in (1.5). For general β > 0 there is also a microscopic limit for the
CβE known as the Sineβ process, but it does not seem to be a DPP when β 6= 2,
making its description quite uneasy.

In Chapter 8 we describe the Sineβ process as an infinite Gibbs measure associ-
ated with the logarithmic interaction on R by means of the Debrushin-Lanford-Ruelle
(DLR) formalism. This yields further information on Sineβ, for instance that it is
number-rigid for any β > 0.
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Part I – Determinantal point processes





Chapter 2

DPPs for signal processing

Based on the joint work [P12] with Rémi Bardenet (CNRS, Université de Lille).

What is the musical score of a white noise? A central problem in signal
processing is denoising, that is to extract the true signal from an ambiant noise, and
a classical tool to do so is time-frequency analysis, which we briefly review; for more
information see the reference books [Cohen, 1995; Flandrin, 1998; Gröchenig, 2001].

To start with an example, say that a signal is a member f of the Hilbert space
L2(R,C), where R refers to the time variable. A standard way to encode this signal
is to use its spectrogram, which associates to each time and frequency a positive
number, that is a continuous generalization of a musical score. It is however impos-
sible to localise exactly a signal both in time and frequency, due to the Heisenberg
uncertainty principle. One possible strategy is to localise the signal in time by mul-
tiplying it with a window function and then take its Fourier transform, that is to
consider

Vgf(t, ω) :=
∫
R
f(x)g(x− t)eiωxdx = 〈f,MωTtg〉L2

where g is localized around zero, and where we introduced the multiplication and
translation operators Mωh = eiω ·h and Tth = h(· − t) for t, ω ∈ R. The linear
transformation Vg yields the short-time Fourier transform (STFT) Vgf of the signal
f , and the spectrogram is finally defined by |Vgf(t, ω)|2. An interesting window
function g is the standard Gaussian function: it is the most localized function in
time and frequency in the sense that it achieves equality in the uncertainly principle
inequality. It turns out it is more convenient to see the STFT as a function of one
complex variable z := t+ iω, that we still denote by Vgf .

Next, given a white noise ξ on L2(R,C), representing the ambiant noise, and
σ > 0, suppose one observes the signal f + σξ. A prototypical approach to denoise
this signal is to compute its STFT, then restrict it to regions of the complex plane
where the spectrogram is larger than a given threshold, and finally use an inversion
formula to recover the signal. However, to quantify the error made with this recipe
one should know what is the typical amplitude of the white noise’s part of the
spectrogram, or the law of its extremal values, but such theoretical results don’t

14



seem within reach yet. Still, most methodologies have focused on detecting and
processing the local maxima of the spectrogram.

Zeros of spectrograms. Flandrin [2015] has recently observed that, when it is
applied to a Gaussian white noise, the STFT with Gaussian window is a random
analytic function identifiable by its zeros thanks to a Weierstrass-Hadamard product
formula. Flandrin [2015] then proposed to use the point process formed by these
random zeros in filtering and reconstruction of signals in noise. In particular, Flan-
drin [2015] empirically observed that the zeros of this spectrogram spread out very
evenly on the time-frequency plane, with regular Voronoi tessellations. Pushing fur-
ther Flandrin’s investigation, Bardenet, Flamant, and Chainais [2018] proved in the
same Gaussian setting that the zeros of the white noise’s spectrogram have the same
distribution as the zeros of the planar Gaussian analytic function (GAF). Bardenet
et al. [2018] then used known probabilistic results on the planar GAF to inform
the design of signal reconstruction procedures in the spirit of [Flandrin, 2015]. In
fact, they were hunting for DPP, since this would have yield more precise signal
reconstruction procedures due to the exact formulas available for the correlation
functions, and they were very close but the invariant GAF whose zeros form a DPP
is not the planar but the hyperbolic one. A natural problem is thus to find other
natural transformations in signal processing that maps a Gaussian white noise onto
the hyperbolic GAF, which we addressed in [P12], and invariant GAFs in general.

Zeros of scalograms and the hyperbolic GAF. Another class of signals of
importance are the so-called analytic signals, which are complex signals f ∈ L2(R,C)
without negative frequencies, namely such that Supp(f̂) ⊂ R+ with f̂ the Fourier
transform of f . We denote by H2(R) the space of analytic signals, which can also
be obtained as the boundary of the Hardy space H2(C+) of the upper half-plane
C+ := {z ∈ C : Re(z) > 0}.

The analog of the time-frequency transform of interest here is a time-scale trans-
form, or continuous wavelet transform, popularized by Daubechies and Paul [1988]
and defined by

Wβf(t, s) := 〈f, TtDsψβ〉L2

for f ∈ H2(R), t ∈ R and s > 0. Here, Tt is again the translation operator but now
the dilation operator Dsf := s−1/2f(·/s) comes into play, and ψβ is the so-called
mother wavelet defined by ψβ(x) := (x + i)−β. Again, we see Wβf as a function of
one complex variable z = t+ is on the upper half-plane C+. The next result can be
found in [P12].
Theorem 2.1. The wavelet transform Wβξ of a Gaussian white noise ξ on H2(R)
is, up to an explicit conformal mapping C+ → D, the hyperbolic GAF of parameter
α = 2β. In particular, the point process given by the zeros of Wβξ is invariant under
the isometries of the Poincaré half-plane and, when β = 0, it is determinantal with
kernel

KC+(x, y) := −1
π(x− y)2 .
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We note that KC+(x, y) is the reproducing kernel associated with the Bergman
space A2(C+). A similar observation has been simultaneously and independently
made by Abreu, Haimi, Koliander, and Romero [2018].

In fact, we provide in [P12] a systematic approach to derive this type of results.

A general framework. Let us take some distance to the initial problem and look
at the general structure. Let H be a complex separable Hilbert space, representing
the signals, and consider a linear transformation L : H → A(Λ) taking its values in
the space of analytic functions on a domain Λ ⊂ C. To identify transformations such
that Lξ is an invariant GAF, the approach from [P12] is quite simple at the formal
level and goes as follows. Since for any orthonormal basis (fk) of H a Gaussian
white noise ξ on H can be represented as

ξ
law=

∑
k

ξk fk (2.1)

with i.i.d NC(0, 1) random variables (ξk), we have by linearity of L ,

L ξ(z) law=
∑
k

ξk Lfk(z). (2.2)

To obtain an invariant GAF thus amounts to look for transformations L and basis
(fk) such that Lfk(z) =

√
ck
k! z

k. By looking for L ’s of the form Lf(z) = 〈Kz, f〉
for every z ∈ Λ, this leads to take

Kz :=
∑
k

√
ck
k!z

k fk (2.3)

to succeed, and hope there exists closed known formulas for (2.3).
To put this argument on a firm ground, we first have to deal with the problem

that (2.1) is not true when H is infinite dimensional, since the right hand side
diverges in H a.s; note that we did not specify what we meant by “Gaussian white
noise” on L2(R,C) or H2(R) in the previous discussion. We moreover need to show
the right hand side (2.2) is a well defined random analytic function. To do so
we use Gross construction of abstract Wiener spaces and rigorously define ξ as a
random distribution on the space Θ obtained as the closure of H with the weaker
norm ‖f‖2

Θ := ∑
k(1+k2)−1|〈f, fk〉|2. We also provide concentration estimates when

approximating this abstract white noise by the finite sum obtained by truncation of
the right hand side of (2.1) in the space Θ [P12, Section 5].

Connexion to classical orthogonal polynomials. To recover the planar GAF
in the setting of the STFT as in [Bardenet et al., 2018], let’s take H = L2(R,C)
with basis (fk) given by the Hermite functions, constructed from the orthogonal
polynomials (OPs) with respect to the Gaussian weight e−x2/2 on R. Up to change
of variables involving a scaling parameter ` and non-vanishing multiplicative terms,
the STFT Vg in a Gaussian window is know to be match the Bargmann transform,
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that we denote by L (see the table below). Now, the fact that L has a kernel (2.3)
with fk given by the Hermite functions and ck = `N , namely that L maps the white
noise onto the planar GAF, turns out to be equivalent to an identity satisfied by the
generating function of the Hermite polynomials.

Similarly, in the setting of analytic signals, one takes H = H2(R) and for ba-
sis (fk) the inverse Fourier transform of the Laguerre functions, constructed with
another family of classical OPs associated with the Gamma weight x2βe−x on R+.
The Daubechies-Paul wavelet transform Wβ, up to cosmetic modification again, can
be represented as the Bergman transform L of the upper half-plane, and digging
out the hyperbolic GAF reduces to a known identity for the generating function of
Laguerre polynomials.

The reader familiarized with classical OPs and the Askey scheme should now
want to try every generating function identities for OPs she/he knows to see what is
going on, and this is what we partially did in [P12]. For instance, one recovers the
spherical GAF by taking Krawtchouk polynomials, and it comes with a new discrete
transform on the finite dimensional space H = CN . We also recover again the planar
and hyperbolic GAF from discrete transforms on the Hilbert space H = `2(N,C)
thanks to Charlier and Meixner OPs; we summarize these findings in the next table.
Let us stress that in practice a signal is eventually discretized to be treated by
computer, and thus transformations that are discrete from the start may be of
interest for the users.

H Transform L Basis (fk) GAF

L2(R,C) e−z2/2

π1/4

∫
R
f(x) e

√
2xz−x2/2dx (Bargmann) Hermite C

`2(N,C)
∑
x∈N

f(x) z
x

√
x!

(New) Charlier C

H2(R) 1
(1− z)2β+1

∫
R+
f̂(x)xβe−

x
2

1+z
1−z dx (Bergman) Laguerre D

`2(N,C)
∑
x∈N

f(x)
√

Γ(x+ α + 1)
x! zx (New) Meixner D

CN+1
N∑
x=0

f(x)

√√√√(N
x

)
zx (New) Krawtchouk S

Recognizing elementary signals. The picky reader may have noticed that the
form of the three (new) discrete transforms in the previous table did not require
any sophisticated constructions with OPs to be introduced, since one could have
taken the canonical basis ek(x) = 1k=x to make the findings of the associated GAF
obvious. However, contrary to the the canonical basis, the bases constructed with
OPs behave like sinusoidal signals and thus are more likely to represent real life
signals, and the fact that the new transforms map these OP bases onto monomials
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(up to an explicit conformal mapping) is remarkable. In particular, this makes the
recognition of elementary signals fk’s on the “spectrograms” |L fk(z)|2 quite easy.

Perspectives. First, it would be interesting to see if one can design an efficient
denoising algorithm for the Daubechies-Paul wavelet transform based on the deter-
minantal structure and the invariance under the hyperbolic isometries, which is just
an exotic kind of stationarity. For instance the (gap) probability to have no zero of
W0ξ(z) in a given compact can be evaluated and thus serve as a benchmark to detect
signal in noise. It would be interesting to do the same for the discrete transforms
we introduced above, especially the one on CN since it bypasses the errors made in
the discretization process.

At the theoretical level, it would be instructive to see if using other generating
function identities leads to worthy results. For instance, one can check that a second
identity involving the Laguerre OPs yields a transformation L known as the Hankel
transform, which is the Fourier transform for rotationally invariant functions on Rd,
but the GAF obtained is not one of the three invariant GAFs. Perhaps it satisfies an
invariance with respect to transforms that are more exotic than the isometries for
the three complex geometries with constant curvature? Similarly, using an identity
for Chebyshev OPs one recovers the free Bargmann transform, which is the analog of
the Bargmann transform in free probability [Biane, 1997], and it maps a Gaussian
white noise onto the hyperbolic GAF, and so do more generally transformations
related to Jacobi OPs. But there are other generating identities of Jacobi OPs (see
e.g. [Ismail, 2005]) leading to other hypergeometric GAFs with unknown invariance
properties, at least to the author.

Finally, having in mind that Fourier theory can be understood as a particular
case of representation theory, it would be interesting to see which groups are behind
the discrete transforms we introduced above (especially the one on CN). Indeed, the
two-parameter family (MωTtg)t,ω∈R appearing in the STFT in a Gaussian window
is known to provide an irreducible representation of the (reduced) Heisenberg group
acting on L2(R,C), and this structure is rich enough to recover most properties
of Gaussian time-frequency analysis [Gröchenig, 2001, Chapter 9]. A similar set-
ting arises in the Daubechies-Paul wavelet transform, but with the group of affine
transformations of R instead of the Heisenberg group. The unveiled connexion with
classical OPs makes believe that a similar rich group theoretic structure should
be present for the three discrete transforms introduced above, which may provide
further motivation to study them.
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Chapter 3

DPPs for Monte Carlo algorithms

Based on the joint work [P8] with Rémi Bardenet (CNRS, Université de Lille).

Monte Carlo algorithms. Given a measure µ on a Polish space Λ and a class of
test functions f : Λ→ R, a quadrature algorithm outputs N nodes x1, . . . ,xN ∈ Λ
and weights w1, . . . , wN > 0 such that the error EN(f) in the approximation∫

Λ
f(x)µ(dx) '

N∑
j=1

wjf(xj) (3.1)

is reasonably decaying as N →∞. The error typically depends on the regularity of
the integrand f as well. When Λ = [−1, 1] and µ(dx) = dx the simplest idea, at the
heart of the Riemann integration, is to take for nodes a uniform grid with mesh 1/N
and uniform weights 1/N , since a Taylor expansion then yields EN(f) = O(σf N−1)
provided that σf := ‖f ′‖L∞ <∞. For the d-hypercube Λ = [−1, 1]d, the same 1/N -
mesh discretization yields the same error order, but using Nd nodes. This means
that EN(f) = O(σf N−1/d), which is not reasonable even for rather small dimensions;
one refers to this phenomena as the “curse of dimensionality”.

At this point one should stress that there is an important need in real world
applications for being able to integrate functions on rather large dimensional spaces.
An example, among others, is Bayesian statistics, which is used more and more often
to draw conclusions in biology and medicine♣, and where an answer typically takes
the form of an integral over the parameter space of the model under study.

One way to repel the curse of dimensionality is provided by the classical CLT,
since taking i.i.d uniform random nodes xj’s on [−1, 1]d and uniform 1/N weights
thus yields a typical error ‖EN(f))‖L2 ∼ O(σf N−1/2) with σ2

f := Varf(x1) for every
dimension d ≥ 1, and moreover that N1/2EN(f) → N (0, σ2

f ) in law as N → ∞,
leading to asymptotic confidence intervals. Put otherwise, with the same number of
points, i.i.d random nodes explore the d-hypercube more efficiently than a uniform
grid as soon as d ≥ 3. This observation is a vanilla version of Monte Carlo algo-
rithms, which refer to quadrature algorithms with random nodes/weights and often
♣For instance, requesting “Bayesian statistic” on PubMed outputs more than 17000 articles.
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designed by using appropriate Markov processes, like in the Metropolis-Hastings al-
gorithm. However, an error of order N−1/2 can be still not satisfying whenever N is
relatively small, having in mind applications where evaluating a function at a node
represents a costly physical or biological experiment (in time and/or money). Note
that in dimension one, i.i.d nodes are not performing as well as a uniform grid, but
nodes generated from the CUE do, according to (1.3). Thus DPPs seem to be an
interesting class of random nodes to improve Monte Carlo algorithms beyond the
N−1/2 frontier. Indeed, aside from the CUE, it is reasonable to expect that repulsive
particle systems tend to explore more efficiently the ambiant space than i.i.d nodes.

Hyperuniform DPPs. Recalling the introductory chapter and the notation (1.16),
we are left to design DPPs with rank N projection kernel KN and reference measure,
say, µ such that Var[XN

f ] = o(N) for a reasonable class of test functions f . One
way to do so is to assume for simplicity♥ that KN is Hermitian of the form (1.9), so
that the variance formula (1.17) yields (with 〈f, g〉 :=

∫
f g dµ)

Var[XN
f ] =

N∑
k=1
〈fϕk, fϕk〉 −

N∑
k,`=1

∣∣∣〈fϕk, ϕ`〉∣∣∣2.
Assume further that (ϕk)k∈I is an orthonormal basis of L2(µ) for some discrete set
of indices I that contains {1, . . . , N}. If the test function f is such that fϕk ∈ L2(µ)
for all k, then we can plug the expansion fϕk = ∑

`∈I〈fϕk, ϕ`〉ϕ` into the first sum
of the previous equation so as to obtain

Var[XN
f ] =

N∑
k=1

∑
`∈I

`/∈{1,...,N}

∣∣∣〈fϕk, ϕ`〉∣∣∣2 , (3.2)

and a similar formula holds for Cov(XN
f ,XN

g ) by polarization. Thus the vari-
ance/covariance asymptotics as N → ∞ depends on the growth of the coefficients
〈fϕk, ϕ`〉 for indices k, ` in the window {1, . . . , N}× I \ {1, . . . , N}. Moreover, since

Var[XN
f ] =

∑
m,n∈I

f̂mf̂nCov(XN
ϕm ,X

N
ϕn) (3.3)

where f̂m := 〈f, ϕm〉, this shows that Var[XN
f ] is an explicit function of the general-

ized Fourier coefficients f̂m and the product formula coefficients 〈ϕmϕk, ϕ`〉. Thus,
when a product formula is known for the ϕk’s, the asymptotic behavior of Var[XN

f ]
can be a priori derived after some combinatorics and enough bravery.

For instance, for the CUE we have ϕk(x) = eikx, I = Z, and the product formula
〈ϕmϕk, ϕ`〉 = 1m+k=`, and this yields after a quick computation

Var[XN
f ] =

∑
n∈Z

min(|n|, N)|f̂n|2 .

♥The same line of argument works for non-Hermitian kernels of the form
∑
ϕk ⊗ ψk with

biorthogonal ϕk’s and ψk’s.
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This leads to the order one variance as soon as f is H1/2-Sobolev and, if f is less
smooth (e.g. a step function), the variance may still be smaller than N (e.g. logN).

This approach can be extended to the d-dimensional torus Td, since the Fourier
basis ϕk(x) = ei〈k,x〉 indexed by I = Zd satisfies 〈ϕmϕk, ϕ`〉 = 1m+k=`. However to
define a DPP of N points, we further need to specify an ordering on the multi-indices
k’s, namely to pick a bijection b : N∗ → Nd, and set ϕk := ϕb(k). For instance one
may consider the bijection associated with the graded lexicographic order defined
by saying that for every M ≥ 1 we have

{b(1), . . . , b(Md)} = CM := {(k1, . . . , kd) ∈ Nd : 0 ≤ k1, . . . , kd ≤M − 1}

and by filling the layer between CM and CM+1 according to the lexicographic order.
After more work one can show that Var[XN

f ] = O(N1−1/d) provided f ∈ C1(Td,R),
leading to a hyperuniform DPP. The main contribution of [P8] is the following
generalization to the products of general orthogonal polynomials on [−1, 1]d.

Theorem 3.1. Let µ = µ1 ⊗ · · · ⊗ µd be a product measure on [−1, 1]d, where each
µj has all its moments and a Lebesgue decomposition µj(dx) = ωj(x)dx + µsj(dx)
such that ωj(x) > 0 for a.e. x ∈ (−1, 1). For every N ≥ 1, let x1, . . . ,xN be
the DPP with rank N projection symmetric kernel associated with the orthonormal
polynomials (ϕk) for µ, ordered by the graded lexicographic ordering of their degrees.
Then, for every f ∈ C1([−1, 1]d,R), we have Var[XN

f ] = O(N1−1/d) and the CLT
√
N1+1/d

∫
f d(µ̂N − Eµ̂N) law−−−→

N→∞
N (0, σ2

f ) ,

where the limiting variance σ2
f is explicit.

This theorem can be seen as a higher dimensional generalization of Johansson’s
CLT (1.3). In fact, the case d = 1 was already obtained by Breuer and Duits
[2017] and we only investigated the setting d ≥ 2 in [P8]. Coeurjolly, Mazoyer, and
Amblard [2020] have further investigated the Fourier DPP on the d-torus Td.

DPPs for Monte Carlo estimators. Having in mind that exact sampling algo-
rithms for DPPs are available, a last obstruction to turn the previous CLT into a
Monte Carlo algorithm is that

∫
f dµ̂N is not directly an estimator of

∫
f dµ, since

E
∫
f dµ̂N =

∫
f(x) 1

N
KN(x, x) dµ(x), and 1

N
KN(x, x) has no reason to converge to

1. A natural way to tackle this problem is to take instead of 1
N

the weights

wj := 1
KN(xj,xj)

(3.4)

so that the bias of the estimator EEN(f) is now zero. Theorem 3.1 does not yield
the solution directly since the test function fN(x) := N

KN (x,x)f(x) to which we want
to apply it now depends on N and may not be smooth at the boundary of the
hypercube in the limit N → ∞. Under extra regularity and technical assumptions
we are able to derive a CLT for this estimator as well.
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Theorem 3.2. Let µ = µ1 ⊗ · · · ⊗ µd be a product measure on [−1, 1]d, where each
measures µj is finite, has a C1 density that is positive on (−1, 1), and satisfies the
extra technical assumption [P12, Assumption 1]. For every N ≥ 1, take for nodes
x1, . . . ,xN the same DPP as in Theorem 3.1 and weights as in (3.4). Then, for every
f ∈ C1([−1, 1]d,R) that vanishes on a neighborhood of the boundary of [−1, 1]d, we
have EEN(f) = 0 and ‖EN(f)‖L2 = O(N−(1+1/d)/2). Moreover, a CLT holds

√
N1+1/d EN(f) law−−−→

N→∞
N (0,Ω2

f ) ,

where the limiting variance Ω2
f is explicit.

The extra technical assumption holds true when the µj’s are Beta distributions
for example, that is with density (1− x)αj(1 + x)βj on [−1, 1] for some αj, βj > −1
[P12, Proposition 2.8]. We also have an importance sampling version of the previous
theorem, that can be used when µ is an arbitrary finite measure on [−1, 1]d with a
C1 positive density [P12, Theorem 2.9].

As a final remark, it is worthwhile to note that in dimension one, if we take for
nodes x1, . . . ,xN the zeros of the degree N orthonormal polynomial ϕN with respect
to µ and pick the weights wj as in (3.4), then we recover the famous Gaussian
quadrature. Thus, we can say that our Monte Carlo method is a random version of
the Gaussian quadrature but which still makes sense in higher dimensions. Let us
stress that the zeros of ϕN and the DPP associated with the projection onto the N
first OPs for µ behave similarly for large N [P4].

Perspectives. When N is large, the implementation details of our Monte Carlo
method remains to be improved to be truly competitive against well processed
Markov Chain Monte Carlo methods. This ambition is at the crux of the ERC
Starting Grant “Black Jack” that Rémi Bardenet obtained recently, including faster
DPP simulations and using repulsion in algorithmic parallelization.

There are also natural extensions: can we do better by choosing other bases (ϕk)
than OPs, like wavelets, or eigenfunctions of Laplacians on a manifold? How small
can the variance be in terms of N and the dimension d of the ambiant space? It
seems it depends more on the “dimension” of the set of indices I than the dimension
of the ambiant space itself.

One could also wonder if concentration inequalities are available for DPPs, so
as to provide non-asymptotic confidence intervals for our estimators. A nice answer
is provided by [Breuer and Duits, 2014, Theorem 3.1], which yields subexponential
concentration for all finite rank projection Hermitian DPP. A natural question is
then to investigate what is the class of sub-Gaussian DPPs, in which the CUE
belongs according to (1.2).

22



Chapter 4

DPPs for covariance matrices

Based on the joint works [P5, P6, P7] with Walid Hachem (CNRS, Université Gus-
tave Eiffel) and Jamal Najim (CNRS, Université Gustave Eiffel).

The sample covariance matrix. Consider a centered random vector Z of Rn

with (well defined) covariance matrix Σ. A classical problem arising in many applica-
tions is to find, given an independent sample Z1, . . . , ZN from Z, a decent estimator
for Σ. This question is at the heart of principal component analysis, for instance.
Another setting of interest is wireless networks, where the random vector Z is now
complex, i.e. taking its values in Cn ' R2n. In both real and complex settings the
law of large numbers and the CLT state that the sample covariance matrix

Σ̂N := 1
N

N∑
j=1

Zj
tZj

is a consistent estimator of Σ as the sample size N grows to infinity and n is fixed.
However, a typical case in modern applications is that sometimes N is large but so
is n (e.g. n ∼ 104 for a human genome dataset). Or sometimes n is small but N
is as well (e.g. n ∼ N ∼ 10 for MIMO wireless networks). To investigate these
situations, a more refined analysis using Bernstein concentration inequality and a
covering argument yields, at least when Z is sub-Gaussian,

‖Σ− Σ̂N‖ ≤ C
(√

n

N
+ n

N

)
(4.1)

with probability at least 1 − 2e−n, where ‖ · ‖ stands for the operator norm and
C > 0 only depends on ‖Σ‖ and the sub-Gaussian norm of Z [Vershynin, 2018].
Thus Σ̂N may not be such a nice estimator of Σ when n is of the same order than
N , a regime that we investigate in this chapter.

The assumptions on the matrix model. From now we assume that n grows
with N and by “N →∞”, we refer to the regime where, for some fixed γ ∈ (0,+∞),

n,N →∞ ,
n

N
→ γ.
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This means that we are considering in fact a sequence of n × n covariance matri-
ces Σ; we assume its eigenvalues λ1, . . . , λn remain in a compact subset of (0,∞)
independent on N and have a weak limit ν ∈ P(R+) in distribution, namely

1
n

n∑
j=1

δλj −−−→
N→∞

ν.

We moreover restrict the discussion to a centered complex Gaussian vector Z.
In the following we denote by x1, . . . ,xN the (non-negative) eigenvalues of the

sample covariance matrix Σ̂N and µ̂N the associated empirical measure.

Wishart random matrices. The simplest case to study is the uncorrelated set-
ting, where Σ = In for all n ≥ 1, in which case Marcenko and Pastur [1967] obtained
the a.s. convergence µ̂N → (γ − 1)+ δ0 + ρ(x)dx for an explicit limiting density

ρ(x) = 1
2πx

√
(a− − x)(x− a+) 1[a−,a+](x), a± = (1±√γ)2. (4.2)

Note that here ν = δ1 and hence the limiting spectrum of Σ and Σ̂N are quite
different. In particular, the right hand side of the bound (4.1) cannot be small with
high probability in the regime n ∼ N and thus Σ̂N is a poor estimator of the true
covariance matrix Σ.

It is however instructive to study the random eigenvalues of Σ̂N at the micro-
scopic level, namely the fluctuations of the spectrum around its macroscopic limit.
It turns out, due to the complex Gaussian assumption on Z, that the min(n,N)
positive eigenvalues xj’s are random and form a DPP on R+ with symmetric projec-
tion kernel associated with the Laguerre functions. This structure and asymptotic
formulas for the Laguerre polynomials yield together that the Sine2 process, which
we recall is the DPP with kernel (1.5) that already appeared in the microscopic
limit of the CUE, shows up in the bulk after scaling with a zooming factor N . More
precisely, the point process (N(xj − x)) converges for every x ∈ (a−, a+) to Sine2.

At the right edge of the spectrum another universal point process shows up: the
Airy process, which is the DPP on R with kernel

KAiry(x, y) = Ai(x)Ai′(y)− Ai(y)Ai′(x)
x− y

(4.3)

where Ai is the Airy function. More precisely, the maximal eigenvalue xmax of
Σ̂N , once centered around a+ and scaled at a zooming factor N2/3, converge in law
to those of the maximal particle of the Airy process, known as the Tracy-Widom
distribution [Johansson, 2000].

At the left edge a− of the spectrum, the Tracy-Widom distribution still describes
the fluctuations of the minimal random eigenvalue xmin of Σ̂N provided that γ 6= 1
[Borodin and Forrester, 2003]. Indeed, when γ = 1 we have a− = 0, what is usually
referred as the hard edge, and the density ρ blows up like 1/

√
x near that edge,
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which differs from the previous square root vanishing. In this setting another DPP
on R+ arises, associated to the Bessel kernel

K(α)
Bessel(x, y) =

√
y Jα(

√
x)J ′α(√y)−

√
x J ′α(

√
x)Jα(√y)

2(x− y) (4.4)

where Jα is the Bessel function of the first kind with parameter α. More precisely,
if n = N + α for some fixed α ∈ Z, then xmin converges in law after N2 scaling to
the minimal particle of the DPP with kernel K(α)

Bessel [Forrester, 1993b].

General setting: Macroscopic limit. In the general setting where the limiting
spectrum of Σ is an arbitrary measure ν, Marcenko and Pastur [1967] also obtained
the a.s. convergence µ̂N → (γ − 1)+ δ0 + ρ(x)dx for a density ρ that is not explicit
anymore, but its Cauchy-Stieltjes transform nevertheless satisfies a fixed point equa-
tion. Its support Supp(ρ) is compact, although not necessarily connected anymore
with possibly an infinite number of connected components. Silverstein and Choi
[1995] observed that at each soft edge (i.e. positive edge) of the connected compo-
nents of Supp(ρ) corresponds to a local extrema of the real extension of the inverse
Cauchy-Stieltjes transform

g(z) = 1
z

+ γ
∫ ν(dx)

1− zx ,

and that the density ρ may have cusp points (that is points in the interior of Supp(ρ)
where the density vanishes) associated with possible inflexion points of g. From now,
we call regular a soft edge (resp. cusp point) such that the associated critical point
c of g satisfies lim supN minj |c − λ−1

j | > 0. We show that if a soft edge (resp. cusp
point) is regular, then the density ρ(x) vanishes like a square root at that edge (resp.
like |x|1/3 at that cusp point), and we finally show that the leftmost edge is a hard
edge if and only if γ = 1, in which case ρ(x) blows up like 1/

√
x near zero [P6].

General setting: Microscopic behavior. A natural question is: how do the
eigenvalues fluctuate near each edge of the limiting spectrum? First, we show
that at each regular soft edge there is a well defined sequence of extremal eigen-
value associated to that edge. More precisely, for a regular right edge a we pro-
vide the existence of a deterministic subsequence ϕ(N) such that xϕ(N) → a and
lim infN(xϕ(N)+1 − a) > 0 a.s, and a similar result holds for regular left edges. We
describe the fluctuations for these extremal eigenvalues [P5].

Theorem 4.1. At each regular soft edge, the associated extremal eigenvalue con-
verges in law, after explicit centering around that edge and N2/3 scaling, towards the
Tracy-Widom distribution. Moreover, the collection of rescaled extremal eigenvalues
become asymptotically independent in the large N limit.

The Tracy-Widom fluctuations for the maximal eigenvalue, provided the right-
most edge is regular and making the extra assumption that there is no outliers
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jumping out from the limiting support, was previously obtained in [El Karoui, 2007;
Onatski, 2008]. We also describe the fluctuations near a hard edge [P5] in this gen-
eral setting and moreover provide a precise rate of convergence [P6], motivated by
an open problem raised by Edelman, Guionnet, and Péché [2016].

Theorem 4.2. If n = N + α for some fixed α ∈ Z, then xmin converges in law
after scaling N2 towards the law of the minimal particle of the DPP with kernel
K

(α)
Bessel. Moreover, we provide an explicit O(N−1) error term in the convergence of

the repartition functions.

By combining these theorems, we can describe the convergence and fluctuations
for the condition number of Σ̂N as N →∞ [P5, Proposition 3.2].

Finally, we investigate what is happening microscopically at a cusp point. This
requires to introduce another universal point process known as the Pearcy process,
which is a DPP on R with a non-Hermitian kernel involving the Pearcey-like integral
special functions [P6].

Theorem 4.3. At each regular cusp point, the point process (xj) converges after
centering and N3/4 scaling towards the Pearcey process, depending on a speed pa-
rameter κ that comes with Σ.

These theorems are based on the fact that the random eigenvalues (xj) still form
a DPP in this general setting, although associated to a non-Hermitian kernel, con-
structed with multiple Laguerre polynomials of the second kind for which asymptotic
formulas are not available in general yet. However, this kernel has a complex con-
tour representation that is adapted to a steepest descent asymptotic analysis [Baik,
Ben Arous, and Péché, 2005]. Let us stress that in general this analysis requires
the delicate construction of steepest descent contours, that is usually done explicitly
after tedious computations. In [P5,P6] we instead developed a unified (abstract)
method to provide the existence of appropriate contours, by means of the maximum
principle for subharmonic functions.

Let us also stress that Knowles and Yin [2017] extends the validity of Theorem 4.1
beyond the Gaussian setting.

Perspectives. The regularity assumption seems to be protector of the universal-
ity phenomena, for instance that the Tracy-Widom distribution appears at every
regular soft edge although the macroscopic limit can be quite different from, say,
the uncorrelated setting. A small breach into this assumption leads to the phase
transition unveiled by Baik, Ben Arous, and Péché [2005]. It seems that, in general,
without (a slightly weaker form of) this assumption, the fluctuations will actually
depend on ν, and hence lie outside of the random matrix universality class. Quite
interestingly, the same phenomenon arise in the study of the additive deformation
of a GUE random matrix [Capitaine and Péché, 2015] and random Gelfand-Tsetlin
patterns [Duse and Metcalfe, 2017, 2020]. It would be interesting to see what are
the possible limiting processes that arise outside of this universality class.
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Part II – Coulomb gases





Chapter 5

Concentration for Coulomb gases

Based on the joint work [P9] with Djalil Chafaï (Université Paris Dauphine - PSL)
and Mylène Maïda (Université de Lille).

A law of large numbers for Coulomb gases. The main character of this
chapter is the Coulomb gas on Rd, for d ≥ 2, introduced in Section 1.4. More
precisely, recall the Coulomb potential g was introduced in (1.22). Given an inverse
temperature parameter β > 0 and a potential V : Rd → R∪{+∞}, we consider the
joint probability distribution of N particles x1, . . . ,xN on Rd given by

dPVN,β(x1, . . . , xN) := 1
ZV
N,β

e−βHN (x1,...,xN )
N∏
j=1

dxj (5.1)

where the energy is defined♠ by

HN(x1, . . . , xN) :=
∑
i 6=j

g(xi − xj) +N
N∑
j=1

V (xj). (5.2)

To ensure that the model is well defined, that is to have 0 < ZV
N,β <∞, we assume

V is finite on a set of positive Lebesgue measure and satisfies the growth condition∫
Rd

e−β(V (x)−1d=2 log(1+|x|2))dx <∞. (Hβ)

For reasonable potentials V , the system has a macroscopic limit: there exists
µV ∈ P(Rd) independent on β such that, almost surely,

µ̂N −→
N→∞

µV . (5.3)

The so-called equilibrium measure µV is characterized as the unique solution of a
variational problem: µV is the unique minimizer of the functional

EV (µ) :=
∫∫

g(x− y)µ(dx)µ(dy) +
∫
V (x)µ(dx)

♠Note that, in comparison to (1.21), we now added a prefactor N in front of the potential V ,
which turns out to be the appropriate scaling to have a non-trivial macroscopic limit, and for
cosmetic reasons we also sum over “i 6= j” instead of “i < j”, which induces a change of the “true”
electrostatic energy by a factor 2. The last modification is different from the convention of [P9].
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defined on P(Rd). One can guess this result by a mean field argument: If

E 6=V (µ) :=
∫∫

x6=y
g(x− y)µ(dx)µ(dy) +

∫
V (x)µ(dx), (5.4)

then we have HN(x1, . . . ,xN) = N2E 6=V (µ̂N) and thus the interaction energy is of
order N2. Since the entropy term arising from the randomness is of order N (think
about the i.i.d. setting), the particle system will try to minimize the quantity
E 6=V (µ̂N) and, if we bet that µ̂N has a weak limit with a density, then this limit
should minimize EV . More rigorously, if V is admissible? and continuous, then
for any β > 0 satisfying (Hβ) the weak convergence (5.3) can be obtained from
the Γ-convergence of 1

N2HN towards EV [Serfaty, 2015], or from the large deviation
principle at speed βN2 and strictly convex good rate function EV −EV (µV ) satisfied
by the sequence (µ̂N) [Chafaï, Gozlan, and Zitt, 2014].

Concentration inequalities. Now that the macroscopic limit is identified, one
can ask how fast µ̂N converges to µV , and for instance if the repulsive character
of the Coulomb gas yields a faster-than-independent concentration inequality like
(1.2) for the CUE. A similar concentration inequality has been obtained by Maïda
and Maurel-Segala [2014] for the log-gases on R in a general potential V , but the
Coulomb gas setting wasn’t explored yet at the global scale; let us stress that concen-
tration inequalities for local test functions have already been obtained by Rougerie
and Serfaty [2016]. We indeed obtain fast sub-Gaussian concentration inequalities
in the bounded Lipschitz and Wasserstein W1 metrics.

Theorem 5.1 (Concentration for Coulomb gases). Assume that V is C2 on Rd and
that its Laplacian ∆V satisfies the following growth constraint

lim sup
|x|→∞

 1
V (x) sup

y∈Rd
|y−x|<1

∆V (y)
 < 2(d+ 2). (5.5)

If V is admissible, then there exist constants A > 0, B ∈ R, and a function C(β)
such that, for any β > 0 satisfying (Hβ), any N ≥ 2, and any r > 0, we have

PVN,β
(

dBL(µ̂N , µV ) ≥ r
)
≤ e−AβN2r2+1d=2(β2N logN)+BβN2−2/d+C(β)N . (5.6)

If there exists κ > 0 such that lim inf
|x|→∞

V (x)
|x|κ

> 0, then we have

C(β) =

O(log β), as β → 0,
O(β), as β →∞.

(5.7)

?V : Rd → R ∪ {+∞} is admissible if it is lower semicontinuous, finite on a set of positive
capacity, and satisfies the growth condition lim|x|→∞

(
V (x)− 2 log |x|1d=2

)
= +∞.
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If one further assumes that V grows at least quadratically,

lim inf
|x|→∞

V (x)
|x|2

> 0, (HW1)

then (5.6) also holds true in the W1 metric.

Concerning the hypotheses, the constraint that ∆V does not grow faster than V
is technical. It allows potentials growing like |x|κ for any κ > 0 or exp(|x|), but not
exp(|x|2). As for the regularity condition, we assume for ease of exposition that V
is C2 but much less is required [P9, Remark 1.10].

We also explain how to obtain Wp versions of Theorem 5.1 without much efforts
using that maxNi=1 |xi| is exponentially tight [P9, Theorem 1.12] since theWp metrics
are equivalent to W1 on a compact set. However, by proceeding this way we expect
to lose the optimality in N for the concentration bounds.

Combined with the Borel–Cantelli lemma, Theorem 5.1 directly yields the a.s.
convergence of µ̂N to µV in W1 even when one allows β to depend on N , provided
it does not go to zero too fast, thanks to (5.7).

Corollary 5.2 (W1 convergence). Under the last set of assumptions of Theorem 5.1,
there exists a constant βV > 0 such that the following holds: Given any sequence of
positive real numbers (βN) satisfying

βN ≥ βV
logN
N

for every N sufficiently large, then under PNV,βN we have

lim
N→∞

W1(µ̂N , µV ) = 0

with probability one, in any joint probability space.

Moreover, if one keeps β > 0 fixed and let r → 0 with N , then Theorem 5.1 is
precise enough to yield the convergence of µ̂N towards µV at the mesoscopic scale,
that is after zooming on the particle system around any fixed x ∈ Rd at the scale
N−s for any 0 ≤ s < 1/d [P9, Corollary 1.8].

Coulomb transport inequality. The idea of the proof for Theorem 5.1 is quite
simple: A Jensen inequality argument yields

ZV
N,β ≥ e−N2β EV (µV )+O(N)

and thus, recalling (5.4), we have for any distance dist on P(Rd),

PVN,β
(
dist(µ̂N , µV ) ≥ r

)
≤
∫

dist(µ̂N ,µV )≥r
e−β

(
E 6=V (µ̂N )−EV (µV )

)
+O(N)dx.
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After a regularization of the empirical measure µ̂N one can replace E 6=V by EV in the
right hand side, up to new error terms. If we assume for simplicity that each particle
is restricted to a compact subset K ⊂ Rd, then it is enough show that dist(µ, µV )2 is
dominated by the rate function EV (µ)−EV (µV ) to obtain a sub-Gaussian concentra-
tion bound; the remaining error terms in the theorem come from this regularization
procedure and because we have to deal with the lack of compactness. The functional
domination is obtained in the next theorem, which may be of independent interest.

Theorem 5.3 (Coulomb transportation inequality for equilibrium measures). If V
is admissible, then there exists CV

BL > 0 such that, for every µ ∈ P(Rd),

dBL(µ, µV )2 ≤ CV
BL

(
EV (µ)− EV (µV )

)
. (5.8)

If V further satisfies the growth condition (HW1) then there exists CV
W1 > 0 such

that, for every µ ∈ P(Rd),

W1(µ, µV )2 ≤ CV
W1

(
EV (µ)− EV (µV )

)
. (5.9)

Let us stress that a the growth assumption (HW1) turns out to be a necessary
condition for (5.9) to hold true for every µ ∈ P(Rd).

It is interesting to relate inequality (5.9) to Talagrand’s transportation inequal-
ity (T1) [Gozlan and Léonard, 2010; Villani, 2003]. Indeed, µV would satisfy in-
equality (T1) if (5.9) holds for every µ ∈ P(Rd) after replacing the rate function
EV (µ)− EV (µV ) by the relative entropy H(µ|µV ), which is the rate function in the
Sanov’s large deviation principle for i.i.d. random variables with law µV . This
functional inequality would imply (and in fact, is equivalent to) sub-Gaussian con-
centration for Lipschitz functions of i.i.d random variables with law µV [Marton,
1986; Bobkov and Götze, 1999]. From this perspective, (5.9) can be seen as an ana-
log of Talagrand’s transportation inequality (T1) for the Coulomb interaction, hence
the name of the previous theorem.

Let us also stress that inequalities of the same flavor for probability measures on
the real line R, linking the Wassertein W1 or W2 metrics with EV (µ)−EV (µV ) when
d = 2 have been previously obtained in the context of free probability by Biane and
Voiculescu [2001]; Hiai, Petz, and Ueda [2004]; Ledoux and Popescu [2009]; Maïda
and Maurel-Segala [2014]; Popescu [2013]. In this setting, these functionals are usu-
ally referred to as free (relative) entropies and are related to the large deviation
principle due to Ben Arous and Guionnet [1997] for the one-dimensional log-gas
associated to unitarily invariant ensembles in random matrix theory. Theorem 5.3
recovers the free transport inequality of [Maïda and Maurel-Segala, 2014; Popescu,
2013] as a particular case.

We have also a local version of the Coulomb transport inequality, which we use
to prove it; the notation E(µ) means E0(µ) (no potential) and we can legally extend
its definition to signed measures under the assumptions we make.
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Theorem 5.4 (Local Coulomb transportation inequality). For every compact subset
D ⊂ Rd, there exists a constant CD > 0 such that, for every µ, ν ∈ P(Rd) supported
in D with E(µ) <∞ and E(ν) <∞,

W1(µ, ν)2 ≤ CD E(µ− ν).

When d = 2 and D ⊂ R, Theorem 5.4 yields [Popescu, 2013, Theorem 1]; we
could say that Theorem 5.4 extends Popescu’s local free transport inequality to
higher dimensions.

The proof yields a non-optimal but explicit value for CD given by 4d times the
volume of the smallest Euclidean ball that contains D, which can be bounded thanks
to Jung’s theorem by

CD ≤
1

Γ(d2 + 1)

Diameter(D)
√

8πd
d+ 1

d .
More explicit constants. One may also look for a concentration inequality where
the constants A,B,C(β) are explicit in terms of V . We are able to derive such
a statement when ∆V is bounded from above [P9, Theorem 1.9]. Let us only
illustrate this result with an application to random matrix theory. Indeed, the next
corollary follows since the law of the eigenvalues of a Ginibre random matrix is a
two-dimensional Coulomb gas at inverse temperature β = 1 (in our convention) with
potential V (x) = 1

2 |x|
2, for which the equilibrium measure is the uniform measure

µ◦ on the unit disc.

Corollary 5.5. Let MN be a N × N random matrix with i.i.d. standard complex
gaussian NC(0, 1) entries. If PN stands for the joint law of the eigenvalues of 1√

N
MN

then, for any N ≥ 2 and any r > 0, we have

PN
(
W1(µ̂N , µ◦) ≥ r

)
≤ e− 1

4CN
2r2+ 1

2N logN+N [ 1
C

+ 3
2−log π] (5.10)

where C := C
| · |2
W1 is the constant appearing in Theorem 5.3 for d = 2.

Let us stress that we do not know how to deduce this concentration inequality
from the Gaussian nature of the entries of MN , like one typically does for Hermitian
matrix models. The eigenvalues of a non-normal matrix are not Lipschitz functions
of its entries, in contrast with the singular values for which the Courant–Fischer
formulas and the Hoffman–Wielandt inequality hold [Bordenave and Chafaï, 2012].

One could also use the determinantal structure of the eigenvalues of the Gini-
bre random matrix to reach a concentration inequality, but the best general result
available [Breuer and Duits, 2014] provides subexponential concentration bounds
leading to a weaker inequality than Corollary 5.5. Again, it would be interesting to
find sufficient conditions for DPPs to have sub-Gaussian concentration bounds.
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Chapter 6

A Coulomb gas approach to
Smale’s 7th problem

Based on the joint work [P11] with Carlos Beltrán (Universidad de Cantabria).

Smale’s 7th problem. In this chapter we consider the logarithmic energy of a
configuration x1, . . . , xN on the sphere S := {x ∈ R3 : ‖x‖ = 1} defined by

HN(x1, . . . , xN) :=
∑
i 6=j

log 1
‖xi − xj‖

,

where ‖ · ‖ stands for the Euclidean norm of R3. For a given integer N , the prob-
lem of describing the configurations minimizing HN , or equivalently maximizing the
product ∏i 6=j ‖xi − xj‖, turns out to be extremely hard. This is however a natu-
ral problem: if you have the budget to construct, say, 17 orbiting communication
satelittes, where would you place them so as to maximize your radio covering? As
usual for real life problems, you may be satisfied with an approximate minimizing
configuration. This is exactly what the Smale’s 7th problem asks about, although
his initial motivation was the problem of finding well-conditioned polynomials [Shub
and Smale, 1993], that has been recently solved with a different approach by Beltrán,
Etayo, Marzo, and Ortega-Cerdà [2020].

More precisely, the 7th problem from Smale [2000]’s list of mathematical prob-
lems for the next century asks to find for every N ≥ 2 a configuration x1, . . . , xN ∈ S
and a constant c > 0 independent on N such that

HN(x1, . . . , xN)−min
SN

HN ≤ c logN. (6.1)

More precisely, quoting Smale: “For a precise version one could ask for a real number
algorithm in the sense of Blum, Cucker, Shub, and Smale [1996] which on input N
produces as output distinct points x1, . . . , xN on the 2-sphere satisfying (6.1) with
halting time polynomial in N”.
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Large N expansion. One difficulty in this problem is that the large N behavior
of minSN HN is not even known up to precision logN , so that it is hard to assess
if any proposed configuration does satisfy Smale’s requirement. Indeed, the actual
knowledge is that, as N →∞,

min
SN

HN =
(

1
2 + log 1

2

)
N2 − 1

2 N logN + C? N + o(N). (6.2)

The exact value of the constant C? in (6.2) is still conjectural. In fact, using the
renormalized energy approach introduced by Sandier and Serfaty [2012], Betermin
and Sandier [2018] proved the existence of C? and the upper bound

C? ≤ C∗ := 2 log 2 + 1
2 log 2

3 + 3 log
√
π

Γ(1/3) = −0.0556053 . . . . (6.3)

This upper bound is conjectured to be an equality by Brauchart, Hardin, and Saff
[2012]. The tightest known lower bound is C? ≥ −0.2232823526 . . . Dubickas [1996].

Thus, one can try deterministic algorithms that provide for every N a configu-
ration of N points on S, compute their logarithmic energy and compare it with the
expansion (6.2) to see if they reach an error of order at most N . Hardin, Michaels,
and Saff [2016] made many numerical experiments analyzing different constructions,
but none of them seems to reach the upper bound for C? in (6.3), leading to error
of order at least N and thus far away from the logN asked by Smale.

Another possible strategy to is to look for random configurations on S whose
logarithmic energy could satisfy (6.1) on average, or with high probability. If one
naively take i.i.d uniform configurations on S, then a direct computation shows the
mean energy equals the minimal one plus O(N logN) correction. Armentano, Bel-
trán, and Shub [2011] suggested instead to try the repulsive zeros of the spherical
GAF introduced in Chapter 2 and diminished the correction to an error O(N).
Other attempts, including the DPP on the sphere known as the Spherical Ensemble
[Alishahi and Zamani, 2015], or an elegant particle system called the Diamond en-
semble [Etayo and Beltrán, 2020], reached the error O(N) as well. All these bounds
(analytical and/or numerical) are still far from the upper bound in (6.3).

The Coulomb gas on the sphere. Another natural random configuration asso-
ciated with this problem is the Coulomb gas on S, which is the main character of
this chapter. More precisely, let σ be the uniform measure on S normalized so that
σ(S) = 1. For any N ≥ 2 and β > 0, consider the probability measure on SN

PN,β(dx) := 1
ZN,β

e−βHN (x1,...,xN )
N∏
j=1

σ(dxj)

with partition function

ZN,β :=
∫
SN

e−βHN (x1,...,xN )
N∏
j=1

σ(dxj). (6.4)
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As explained in Chapter 1.4, this is the Coulomb gas on S, namely the canoni-
cal ensemble with (twice the) energy associated to the Green function G(x, y) :=
log ‖x− y‖−1 that solve the Poisson equation

∆S log ‖x− · ‖−1 = 2π(σ − δx) (6.5)

for every x ∈ S. Here ∆S stands for the Laplace-Beltrami operator coming with
the usual Riemannian structure for S ⊂ R3 inherited from the Euclidean structure
of R3; the geodesic distance is thus given by dS(x, y) := arccos〈x, y〉.

Typical configurations of the Coulomb gas will try to minimize HN because of
its density distribution proportional to e−βHN and thus it is tempting to evaluate
the energy HN for such random configurations. Low β’s (high temperature) are not
interesting, since for instance β = 0 yields i.i.d. uniform random configurations.
In fact, when β = 1 the Coulomb gas benefits from an integrable structure: up
to stereographic projection, this is the spherical ensemble mentioned above and
studied by Alishahi and Zamani [2015]. But the larger β is (low temperature) the
more likely it is for PN,β to generate a configuration close to a minimizer, although
the determinantal structure is lost when β 6= 1 making exact computations out of
reach.

The main contribution of this chapter is to show that the Coulomb gas on the
sphere at temperature O(1/N) provides almost minimizing configurations in the
sense of Smale’s problem with exponentially high probability, as well as on average.
Theorem 6.1. For any N ≥ 2 and any β ≥ 1, let x1, . . . ,xN be the random
configuration on S with joint distribution PN,β. For any constant c > 0 we have

HN(x1, . . . ,xN)−min
SN

HN ≤ c logN (6.6)

with probability at least 1− e−κN , where

κ := c
β

N
logN − log β − 8 logN.

Moreover, the mean energy satisfies

E
[
HN(x1, . . . ,xN)

]
−min

SN
HN ≤

N

β

(
log β + 8 logN

)
.

Note that given β and N , the constant c has to be chosen so that κ > 0 since
otherwise the first result becomes empty. We reach the precision logN for any
N ≥ 2 when β is at least of order N . For example, by taking β = N and c = 10 in
Theorem 6.1, we obtain the following estimates.
Corollary 6.2. For any N ≥ 2, if the random configuration x1, . . . ,xN on S has
for distribution the Coulomb gas PN,N at inverse temperature β = N , then

HN(x1, . . . ,xN)−min
SN

HN ≤ 10 logN

with probability at least 1− e−N logN . Moreover,

E
[
HN(x1, . . . ,xN)

]
−min

SN
HN ≤ 9 logN.
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Idea of the proof. The strategy to obtain Theorem 6.1 is quite elementary: First,
we notice that for any constant CN,β > 0 satisfying

logZN,β ≥ −β inf
SN
HN − CN,β (6.7)

we have, for every δ > 0,

PN,β
(
HN(x1, . . . ,xN)− inf

SN
HN > δ

)
≤ e−βδ+CN,β (6.8)

and moreover, using a convexity argument,

E
[
HN(x1, . . . ,xN)

]
− inf

SN
HN ≤

CN,β
β

. (6.9)

We stress that this approach remains valid for arbitrary energy HN and is not tied
to the Coulomb setting. The difficulty is thus to obtain such a constant CN,β, which
we achieve by a perturbative analysis for the Coulomb energy HN near a minimizer.
More precisely, we derive the following estimate, which improves the range of validity
of [Beltrán, 2013, Theorem 1.8] with an alternative proof.

Proposition 6.3. Let N ≥ 2 and (x∗1, . . . , x∗N) ∈ SN be any minimizer of HN . If
(x1, . . . , xN) ∈ SN satisfies

max
1≤i≤N

dS(xi, x∗i ) ≤ arcsin
(

s√
5N3/2

)

for some 0 ≤ s ≤
√

5N/2, then

HN(x1, . . . , xN) ≤ min
SN

HN + s2.

The proof of this estimate relies on the componentwise subharmonicity of the
energy HN and on a separation result of Dragnev [2002] for the minimizers of HN .

Perspectives. First, it seems rather easy to generalize Theorem 6.1 with the
same line of arguments to the Coulomb gas on Rd in a subharmonic potential, like
V (x) = |x|2, and to other (harmonic) compact Riemannian manifolds.

More interestingly, if one accepts stochastic algorithms as solutions for the pre-
cise version of Smale’s 7th problem, Corollary 6.2 yields that it remains to show
that one can sample a configuration from PN,N in polynomial time to solve the
problem, and there is extra margin for simulation error. More precisely, the prob-
lem amounts to sample random variables y1, . . . ,yN on S in polynomial time such
that, if x1, . . . ,xN ∼ PN,N , then HN(y1, . . . ,yN) ≤ HN(x1, . . . ,xN) + C logN with
high probability for some universal constant C > 0. This makes the quantitative
analysis for Monte Carlo simulations of the Coulomb gas, which started only re-
cently [Chafaï and Ferré, 2019; Lu and Mattingly, 2019], an even more attractive
topic for research.

38



Chapter 7

Fluctuations for the CβE

Based on the joint work [P15] with Gaultier Lambert (University of Zurich).

Macroscopic limit and fluctuations of the CβE. Given an inverse tempera-
ture parameter β > 0, recall the CβE introduced in Section 1.4 is the system of N
random particles on T obtained by restriction of Coulomb gas on T × T, namely
with distribution

1
ZN,β

∏
1≤i<j≤N

|eixi − eixj |β
N∏
j=1

dxj
2π .

The macroscopic behavior of the CβE presents the same features than the CUE
presented in Section 1.1: µ̂N converges a.s. to the uniform mesure dx

2π on T and, for
any smooth enough test function f : T→ R, Johansson [1988] proved♣ the CLT

N
∫
f
(
dµ̂N − dx

2π

) law−−−→
N→∞

N
(
0, 2
β
‖f‖2

H1/2

)
, (7.1)

where we recall the Sobolev semi-norm was defined by

‖f‖2
H1/2 := 2

∞∑
k=1

k |f̂k|2 (7.2)

with f̂k :=
∫
T f(x) e−ikx dx

2π the Fourier coefficients of f .

The high temperature regime. First, notice that if we take β = 0, which cor-
responds to the infinite temperature setting, then the xi’s are independent random
variables uniformly distributed on T. Thus, the law of large numbers yields the a.s.
convergence µ̂N → dx

2π as N → ∞ and the classical CLT states that, for any L2

function f : T→ R such that f̂0 = 0,
√
N
∫
f
(
dµ̂N − dx

2π

) law−−−→
N→∞

N
(
0, ‖f‖2

L2

)
. (7.3)

♣ More precisely, the CLT in [Johansson, 1988] is stated for β = 2 but it is straightforward to
check that the method still applies for any fixed β > 0 provided that the test function f is C1,α

for some α > 0, see also [Lambert, 2019, Theorem 1.2]. Note that although one may believe this
CLT holds as soon as ‖f‖H1/2 <∞, there are counterexamples for β = 4 [Lambert, 2019].
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Note that, for such real valued test function f , the limiting variance can be written

‖f‖2
L2 :=

∫
T
|f(x)|2 dx

2π = 2
∞∑
k=1
|f̂k|2. (7.4)

Note also the difference of normalization between (7.1) and (7.3).
The goal of this chapter is to present what is happening at the intersection of

these two regimes. We start with a generalization of the concentration inequality
(1.2) for arbitrary β > 0.

Theorem 7.1 (Concentration for CβE). For any β > 0, N ≥ 10, and r > 0,

PCβE

(
W1(µ̂N , dx

2π ) ≥ r
)
≤ e−

β
2 ( 1

8πN
2r2−5N logN−C0N)

where C0 := 2 log 2 + 17/2 + π−1 ' 10.2.

This yields in particular the a.s. convergence µ̂N → dx
2π as N → ∞ in the W1

metric provided♠ that β � N−2. For the fluctuations, it turns out there is a critical
temperature regime where the limiting variance interpolates between the Lebesgue
L2 and the Sobolev H1/2 (semi-)norms, and this happens when β ∼ N−1.

Theorem 7.2 (CLT for CβE at high temperature). Given θ > 0, consider the CβE
at inverse temperature β := 2θ

N
. Then, for every f ∈ C5(T,R) with f̂0 = 0, we have

√
N
∫
f (dµ̂N − dx

2π ) law−−−→
N→∞

N
(
0, σθ(f)2

)
where the limiting variance is given by

σθ(f)2 = 2
∞∑
k=1

1
1 + θ/k

|f̂k|2. (7.5)

Recalling (7.2) and (7.4), it indeed follows that σθ(f) → ‖f‖L2 as θ → 0 and
that

√
θ σθ(f)→ ‖f‖H1/2 when θ →∞.

We note that a similar CLT for the GβE was obtained [Trinh, 2017; Nakano and
Trinh, 2018] thanks to the tridiagonal matrix representation for this specific model
[Dumitriu and Edelman, 2002], although the limiting variance is not explicit there.

The two previous theorems are both particular cases of more general results we
obtain for the log-gas on T in an arbitrary potential V that we introduce now.
♠This should be true even when β ≤ N−2, although one needs other techniques to prove it.

Indeed, in this regime one can expect the particles are essentially independent (exponentially small
correlations). See also the interesting change of behavior for the partition function of the GβE when
β ∼ N−2 pointed out in [Pakzad, 2018, Lemma 1.3].
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Log-gas on T with an arbitrary potential V . For any θ ≥ 0 and any contin-
uous potential V : T → R, we now consider N random interacting particles on T
with joint probability distribution

dPVN,θ(x1, . . . , xN) := 1
ZV
N,θ

∏
i<j

|eixi − eixj |
2θ
N

N∏
i=1

e−V (xi) dxi
2π (7.6)

where ZV
N,θ > 0 is a normalization constant. We set

µ0
V (dx) := e−V (x) dx

2π (7.7)

and, by adding a constant to V if necessary, we assume that µV0 is a probability
measure on T. In particular, (7.6) is the law of N i.i.d. random variables with
distribution µ0

V when θ = 0.
The potential V has an effect on the macroscopic limit and its presence allows

to see why something particular should happen in the regime β ∼ N−1. Indeed, the
heuristic presented in Chapter 5 now concerns an interaction term ∏

i<j |eixi − eixj |
2θ
N

with an exponential contribution proportional toN times energy while (µ0
V )⊗N yields

a contribution of N times entropy, and thus this is the only temperature regime
where there is a fair competition between the energy and entropy. More precisely,
if we introduce the logarithmic energy of µ ∈ P(T) defined by

E(µ) :=
∫∫

log 1
|eix − eiy|

µ(dx)µ(dy) (7.8)

and denote by H(µ|µV0 ) the relative entropy of µ with respect to µV0 , then the
functional of interest here is

F θ
V (µ) := θ E(µ) +H(µ|µV0 ). (7.9)

The next result can be extracted from the literature.

Theorem 7.3. Let θ ≥ 0 and assume V : T→ R is continuous.
(a) The functional F θ

V : P(T) → [0,+∞] has compact level sets {F θ
V ≤ α}, α ∈ R,

and is strictly convex. In particular it has a unique minimizer µθV on P(T).
(b) The sequence (µ̂N) satisfies a large deviation principle at speed θN with rate
function µ 7→ F θ

V (µ)− F θ
V (µθV ), and in particular µ̂N → µθV a.s. as N →∞.

Indeed, when θ = 0, this is Sanov’s theorem for i.i.d random variables and
elementary properties of the relative entropy [Dembo and Zeitouni, 2010]. Note that
the unique minimizer of F 0

V is given by (7.7) and hence the notation is consistent.
When θ > 0, statement (a) is standard and (b) can be found in [Berman, 2018;
García-Zelada, 2018].

When V = 0 we have µθV = dx
2π for every θ ≥ 0, and we show in general that

µθV has a bounded density that is larger than a positive constant and is essentially
as smooth as V is [P15, Proposition 2.1]. To complete the picture, we obtain the
following concentration bounds.
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Theorem 7.4. Let θ > 0 and assume V : T→ R has a weak derivative V ′ in L2(T).
Then, there exists C = C(µθV ) > 0 such that, for every N ≥ 10 and r > 0,

PVN,θ
(

W1(µ̂N , µθV ) ≥ r
)
≤ e−θ( 1

8πNr
2−5 logN−C).

Now we turn to our result for the fluctuations of the particle system around µθV ,
which needs some preparation. Let us also write µθV for the density of the equilibrium
measure and introduce the operator L formally defined on L2(T) by

−Lϕ = ϕ′′ + 2πθU (µθV ϕ′) + (log µθV )′ϕ′ . (7.10)

Here U stands for the Hilbert transform defined by

U f(x) := −p.v.
∫
T

f(t)
tan

(
x−t

2

) dt
2π (7.11)

with p.v. the Cauchy principal value. Note that when θ = 0 the operator Lϕ =
−ϕ′′+V ′ϕ′ is just a Sturm-Liouville operator. We show in general, for any θ > 0 and
any V ∈ C1,1(T)?, that the operator L is positive self-adjoint defined (by Friedrichs
extension) on the Hilbert space

H :=
{
f ∈ L2(T) : f ′ ∈ L2(T),

∫
f dµθV = 0

}
equipped with the inner-product

〈f, g〉H :=
∫
f ′ g′ dµθV ,

and moreover that the inverse L −1 is a densely defined trace-class operator there.
We are now in position the state our CLT, that essentially says that, in the sense

of finite dimensional distributions, the measure
√
N(µ̂N −µθV ) converges as N →∞

to a Gaussian process on H with covariance operator L −1; we also obtain an upper
bound for its speed of convergence in the Wasserstein W2 metric.

Theorem 7.5. Let θ > 0 and V ∈ C3,1(T). Under the law PVN,θ defined in (7.6), if
f ∈ C2κ+1(T) for some integer κ ≥ 2, then we have

FluctN(f) :=
√
N
∫
f d(µ̂N − µθV ) law−−−→

N→∞
N
(
0, σVθ (f)2

)
where the limiting variance is given by

σVθ (f)2 := 〈
(
f −

∫
f dµθV

)
,L −1

(
f −

∫
f dµθV

)
〉

H
. (7.12)

Moreover, there exists C = C(θ, V, f) > 0 such that

W2

(
FluctN(f), N

(
0, σVθ (f)2

))
≤ C

√
logN
N

κ−1
κ+1

.

?Cm,1 means a function f having m derivatives such that f (m) is Lipschitz-continuous.
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By taking V = 0, we recover Theorem 7.2 since the formula (7.5) for the limiting
variance is obtained by observing that the operator L is easily diagonalized in the
Fourier basis.

In this general setting we also show that σVθ (f) → ‖f‖L2(µ0
V ) as θ → 0 and we

provide a sufficient condition so that
√
θ σVθ (f)→ ‖f‖H1/2 [P15, Section 8].

The proof of Theorem 7.5 relies on the concentration bounds in Theorem 7.4 and
on a normal approximation technique introduced in [Lambert, Ledoux, and Webb,
2017], inspired from the Stein method [Ross, 2011]. To give an insight on why the
operator L appears in this context, consider the “generator” L = ∆ + 2θ

N
∇HN · ∇

acting on smooth functions TN → R, where HN is the energy associated with the
canonical ensemble (7.6). For smooth test function f : T → R, we then show
the approximate-commutation relation LFluctN(f) = FluctN(−L f) + Error(N) as
N → ∞, which in turn yields an asymptotic control for the limiting fluctuations
by the Stein approach. Let us stress that Lambert et al. [2017] already used this
approach to quantify the rate of convergence for the fluctuations of beta-Ensembles
on R at fixed temperature, but there is a substantial technical difference in the
high temperature regime due to the fact that the operator L has an extra Sturm-
Liouville component. In particular, the spectral behavior of L is quite different,
which is responsible for the different rate of convergence and limiting variance.

Let us also mention that a similar temperature regime has been studied in
Guionnet and Bodineau [1999] for a two-component plasma model confined in a
2D box with different techniques, but with a similar limiting variance. An impor-
tant progress has been recently made by Serfaty [2020] for the Coulomb gas on Rd

in a temperature regime that is arbitrary close to this critical regime, including a
CLT in dimension d = 3 that is new even at fixed temperature.

Perspectives. One reason to choose to work with the CβE model was to ben-
efit from the compact support of the particle system and thus to avoid technical
difficulties in identifying the limiting variance structure for the fluctuations. From
this perspective, it would be interesting to describe the variance structure for higher
dimensional Coulomb gas on a compact Riemannian manifold M at inverse temper-
ature β = 2θ

N
and, say, without potential (one could even start with the 2-sphere as

in the previous chapter). In this setting µ̂N converges a.s. to the uniform measure
σ on M ; concentration inequalities are already available from [García-Zelada, 2019].
Preliminary computations using similar techniques as we used for the CβE lead to
a limiting variance defined, for any smooth test function f satisfying

∫
fdσ = 0, by

σ2
θ(f) = 〈f,L −1f〉H1 , where H1 stands for the usual Sobolev space and

L f := −∆f + θf.

This would now yield an interpolation between the L2 andH1 spaces structure, in the
sense that σθ(f) → ‖f‖L2 when θ → 0 and

√
θ σθ(f) → ‖f‖H1 when θ → ∞. This

supports the conjecture that the fluctuations of the Coulomb gas in any dimension
at fixed temperature should be described by a Gaussian free field. However there
are technical difficulties in the analysis that we did not overcome yet.
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Chapter 8

DLR equations for Sineβ

Based on the joint work [P13] withDavid Dereudre (Université de Lille), Thomas Leblé
(CNRS, Université de Paris) et Mylène Maïda (Université de Lille).

The Sineβ process. We continue to investigate the CβE at a given (fixed) inverse
temperature β > 0 but at the microscopic level: What is the limit in law of the
point process (N(xj − x))Nj=1 as N →∞ for some fixed reference point x ∈ T, when
(xj)Nj=1 is distributed according to the CβE? As we have seen in the first chapter,
when β = 2 the microscopic limit is the DPP associated with the sine kernel (1.5).
More generally, when β = 1, 2 or 4, this limiting process is rather well understood
due to the determinantal/Pfaffian structure available for their correlations functions
[Deift and Gioev, 2009]; see also [Forrester, 1993a, Chapter 13] for other special
cases with more involved formulas. For general β > 0, a limiting process exists and
is called the Sineβ process, although the mere existence of this limit is a non-trivial
result which was obtained, together with a rather involved description of the limiting
object, by Killip and Stoiciu [2009]. Similarly, Valkó and Virág [2009] obtained the
existence and a sophisticated description of the microscopic limit of the GβE when
the reference point x lies in the bulk ?, and it turns out to be Sineβ as well♣. If
one replaces the gaussian weight e−Nβx2

j/4 in (GβE) by a general weight e−NβV (xj),
then there exists a large class of potentials V for which Sineβ still arises in the bulk
microscopic limit [Bourgade et al., 2014, 2012; Shcherbina, 2014; Bekerman et al.,
2015]. One can also generalize the interaction term |xi − xj|β to h(xi − xj) for
some function h satisfying h(x) ∼ |x|β as x → 0 and smooth elsewhere without
changing the microscopic limit [Venker, 2013]. From this perspective, the Sineβ
process is a universal object appearing as the bulk microscopic limit for a large class
of interacting particle systems.

Describing Sineβ. The aformentioned descriptions of Sineβ involve stochastic dif-
ferential equations that yield the number of particles falling into a given interval; the

?The bulk commonly refers to the subset where the macroscopic limit has a positive density,
which is here (−2, 2) for the GβE.
♣See e.g. [Nakano, 2014] for the identification of these two limits.
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starting point is the representation of the CβE/GβE as the eigenvalues of a banded
random matrix. Such representations turn out to be tractable enough to study
fine properties of the point process, such as large gap probability estimates [Valkó
and Virág, 2010], a CLT [Kritchevski et al., 2012] and large/maximum deviation
estimates for the number of points in an interval [Holcomb and Valkó, 2015, 2017;
Holcomb and Paquette, 2018], as well as the Poissonian behavior of Sineβ when
β → 0 [Allez and Dumaz, 2014].

More recently, the process has been alternately characterized by Valkó and Virág
[2017] as the spectrum of a random infinite-dimensional operator, that allows a
better understanding on the β-dependency of the process [Valkó and Virág, 2020].

The goal of this chapter is to present yet another description for Sineβ that
may be more natural from a statistical physics perspective, by means of canonical
Dobrushin-Lanford-Ruelle (DLR) equations. In short, we show that the Sineβ pro-
cess is a natural infinite Gibbs measure at inverse temperature β > 0 associated
with the logarithmic pair potential interaction, that we could informally write

“ dSineβ(x1, x2, . . .) = 1
Zβ,∞

∏
1≤i<j≤∞

|xi − xj|β
∞∏
j=1

dxj . ” (8.1)

The Dobrushin-Lanford-Ruelle approach. Imagine that γ is a random point
configuration on R with distribution the right hand side of (8.1); it does not make
any sense but let’s keep the reasoning at an informal level. Thus γ has a “density”
proportional to e−βH with energy

H(γ) :=
∑
x,y∈γ
x<y

g(x− y)

associated with the logarithmic (or two-dimensional Coulomb) interaction

g(x) = log |x|−1.

Something that we could make sense of is the conditional law of the restriction
γΛ := γ ∩Λ of the random configuration to a fixed compact subset Λ ⊂ R, knowing
the exterior configuration γΛc , where Λc := R \Λ. More precisely, we are looking for
a probability distribution ρΛ( · |γΛc) on the set Conf(Λ) of point configurations on Λ
satisfying, for any bounded and measurable test function f ,

ESineβ

[
f(γ)

]
= ESineβ

[ ∫
Conf(Λ)

f(η ∪ γΛc) ρΛ(dη|γΛc)
]
. (8.2)

To identify the conditional laws associated with (8.1), we consider the mutual energy
of two point configurations γ, η defined by

H(γ, η) :=
∑
x∈γ
y∈η

g(x− y).
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Since the energy formally splits as H(γ) = H(γΛ)+H(γΛ, γΛc)+H(γΛc), the conditional
density of γΛ knowing γΛc is thus proportional to the function η 7→ e−β(H(η)+H(η,γΛc ))

“defined” on Conf(Λ). Although for any η ∈ Conf(Λ) the finite sum H(η) makes sense
it is not clear if H(η, γΛc) does since the configuration γΛc is infinite. To deal with this
problem we consider instead the move function MoveΛ(η, γ) := H(η, γΛc)−H(γΛ, γΛc),
which represents the energetic change when moving the configuration γΛ into η
inside Λ in presence of the exterior configuration γΛc . Now, one can hope that, due
to possible cancellations or compensations, the infinite sum MoveΛ(η, γ) converges.
This yields a candidate for the conditional density, defined up to a multiplicative
constant by

ρΛ(η|γΛc) ∝ e−β(H(η)+MoveΛ(η,γ)), (8.3)

with respect to the reference measure given by the NΛ(γ)-fold product of the Lebesgue
measure on Λ, where NΛ(γ) stands for the number of particles of γ inside Λ.

In conclusion, the informal representation (8.1) for Sineβ can be rigorously recast
by saying that its conditional densities satisfying (8.2) are given by (8.3), provided
that the move functions are well defined, and this is indeed what we obtain.

Theorem 8.1 (DLR equations). For all β > 0 and for every compact Λ ⊂ R:

(a) The move function MoveΛ(η, γ) exists ♦ for every η ∈ Conf(Λ) and for Sineβ-
almost every γ ∈ Conf(R), .

(b) The DLR equations (8.2)–(8.3) hold true for the Sineβ process.

This representation was already known when β = 2, where the determinantal
structure is available [Bufetov, 2016].

Let us stress that the density (8.3) could have been taken with respect to another
reference measure than the NΛ(γ)-fold Lebesgue measure. The fact that this is the
appropriate reference measure here underlies a property called tolerance that we
have implicitly obtained for the Sineβ process.

A technical part of the proof was to establish the existence of the move function,
for which we needed delicate estimates for the variance of the number of points from
Sineβ falling into a given compact set. Such estimates were available here thanks to
the energetic approach developed by Leblé and Serfaty [2017].

Rigidity. Another interesting feature for Sineβ we obtain from the DLR equations
is that it is number-rigid, in the sense that if γ ∼ Sineβ then the knowledge of the
exterior configuration γΛc determines a.s. the number NΛ(γ) of particles of γ in Λ.

Theorem 8.2 (Number-rigidity). For all β > 0 and compact Λ ⊂ R, there exists a
measurable map F : Conf(Λc)→ N such that, if γ ∼ Sineβ, then NΛ(γ) = F(γΛc).

Theorem 8.2 has been obtained independently by Chhaibi and Najnudel [2018]
without the use of the DLR formalism but following instead the initial approach of
♦More precisely, the limit of MoveΛ(η, γ ∩ [−p, p])) exists when p→∞.
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Ghosh and Peres [2017], which is to show that the variance of the smoothed number
of points from Sineβ falling into a bounded interval can be made arbitrary small. To
do so, they use variance estimates for the CβE obtained by Jiang and Matsumoto
[2015] based Jack’s special functions identities that are tied to this specific model.

Our strategy relies instead on the following general result, that may be of inde-
pendent interest [P13, Theorem 3.18]: Consider an interaction g : Rd → R ∪ {+∞}
in dimension d ≥ 1 that has a very long range, in the sense that g(x) → −∞ as
|x| → ∞, and that is smooth away from the origin. Assume there is a class C of
probability measures on Conf(Rd) that is stable by disintegration and such that one
can define P -a.s. the move functions associated with g for every P ∈ C . Then any
stationary distribution P ∈ C that satisfies the DLR equations is number-rigid.

Perspectives. A natural question, related to the existence of phase transitions in
statistical physics, is to wonder if the Sineβ is the only stationary process satisfying
the DLR equations. In general, uniqueness of the infinite Gibbs measure is expected
in dimension one, although the general theory only applies to short range interactions
[Friedli and Velenik, 2017, Section 6.5.5]. In the determinantal case β = 2, the
uniqueness follows from [Kuijlaars and Miña-Díaz, 2019]. We expect this holds for
general β > 0, and a possible strategy to prove this is to use Theorem 8.1 with
Λ = [−L,L] to represent the conditional law as a log-gas on [−L,L] and to show
this process converges to Sineβ as L → ∞, perhaps by refining the transportation
approach from [Shcherbina, 2014; Bekerman, Figalli, and Guionnet, 2015].

Next, it would interesting to see if our methods can be extended to non-stationary
processes so as to tackle other one-dimensional universal processes like the Airyβ or
the Besselβ processes; the main problem is to find alternatives to the discrepancy
estimates we used for Sineβ. When β = 2, both the Airy2 process and the Bessel2 pro-
cess indeed satisfy well-defined DLR equations [Bufetov, 2016], and the uniqueness
has been obtained for the Bessel2 process [Molag and Stevens, 2019].

Another interesting problem would be to carry out this analysis to the two-
dimensional Coulomb gas, since in this setting any solution of the DLR equations
would be number-rigid thanks to our results. It is not clear however if there should
be a unique solutions for the DLR equations or not, and the negative would entail a
phase transition at a critical temperature(s?) that remains to be identified. There
are indeed many numerical simulations providing evidence for this phase transition,
see e.g. [Strandburg, 1988; Moore and Pérez-Garrido, 1999; Clark et al., 2009].
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