
On the use of the law of large numbers in practice

Adrien Hardy∗

July 3, 2020

Consider a real valued random variable X defined on a probability space (Ω,F ,P)
such that E|X| <∞. The (strong) law of large numbers (LLN) states that, if X1, X2, . . .
are i.i.d copies of X, then the empirical mean Xn := 1

n

∑n
i=1Xi converges as n → ∞ to

the theoretical mean E(X) almost surely. At least, this is what the Wikipedia page on
the LLN says on the 3rd of July 2020. For a precise statement, one needs to specify on
which probability space does the infinite sequence X1, X2, . . . live. This precision seems
always missing in the textbooks, although the LLN is at the center of the probabilistic
modeling that is used in every domains of science where statistics shows up. We present
some thoughts on this problem in this note and put forward a subtlety that is still puzzling
for its author.

Back to basics: Probabilistic modeling. Imagine that I obtain data by measuring
n times some real quantity, so that I have at disposal a sample x1, . . . , xn ∈ R, and that
I want to know the typical value of this quantity. Say, the water level of a river at n
different times measured at a specific place where I want to construct a bridge. Since
the results of these measurements may vary in a way that I can’t predict perfectly, I can
model this quantity by a random variable1 X, so that each observation xi equals to a
realization X(ωi) of X for some ωi ∈ Ω. For example, one can take ω ∈ Ω := R and
X(ω) stands for the water level at time ω ∈ R (fix a reference time to be zero and say
the time unit is a day). A priori I don’t know the distribution of the random variable
X; I can’t even compute the theoretical/true mean E(X). It is tempting to approximate
E(X) by its empirical version xn := 1

n

∑n
i=1 xi = 1

n

∑n
i=1X(ωi) to which I have access to.

However, imagine that I have measured the water level at times ωi when it was heavily
raining just before the measurement. The number xn I obtain in this case will certainly
not be representative of the true mean E(X): I need the outcomes of the experiments to
be representative of all possible behaviors of the random variable X in some sense.

Hi Heidi. One way to find representative ωi’s is to use the mathematical notion of
independence and the LLN. To do so one proceeds as follow, although it is usually implicitly
done. First, extend the probability space (Ω,F ,P) to the product space (Ω,F ,P)⊗n :=
(Ωn,F⊗n,P⊗n) and define for every 1 ≤ i ≤ n the random variable Xi on (Ω,F ,P)⊗n by
Xi(ω) := X(ωi) for every ω = (ω1, . . . , ωn) ∈ Ωn. By definition of the product measure
P⊗n it follows that the Xi’s are independent2 and have the same distribution3 than X.

∗Univ. Lille, CNRS, Inria, UMR 8524, Laboratoire Paul Painlevé, F-59000 Lille, France.
1Namely, a measurable function X : (Ω,F ) → (R,T ) for some σ-algebra T .
2That is, P⊗n(∩n

i=1X
−1
i (Bi)) =

∏n

i=1 P
⊗n(X−1

i (Bi)) for every B1, . . . , Bn ∈ T .
3Namely, P⊗n(X−1

i (B)) = P(X−1(B)) for every B ∈ T , where T is the σ-alegra we equipped R with.
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Since Xi(ω) = X(ωi) = xi this construction means that we have assumed that the sample
x1, . . . , xn we have at hand is a realization of the independent random variablesX1, . . . , Xn.
This should be justified in practice by designing a protocole before measurements such
that the outputs xi’s of the experiments do not depend on each other, in some vague
non-mathematical sense. Back to the water level example, it is likely that the height at
two times close together should be correlated. One can also expect that, due to some
chaotic dynamic resulting from the large number of factors on which the water level
depends on, the heights may be considered independent if we wait long enough between
two measurements.

Infinite sequence. Since by construction xn = 1
n

∑n
i=1Xi(ω) =: Xn(ω) for some ω ∈

Ωn, we are now in position to use the LLN. Wait, almost, since we need to let n → ∞
and our probability space depends on n. Thus, we need to construct a probability space
(Ω∗,F ∗,P∗) which “contains” (Ωn,F⊗n) for every n ≥ 1 and for which the restriction
of the probability measure P∗ to (Ωn,F⊗n) is P⊗n. More precisely, for every n ≥ 1
there should exist a measurable map πn : (Ω∗,F ∗)→ (Ωn,F⊗n) such that P∗

(
π−1
n (A)

)
=

P⊗n(A) for all A ∈ F⊗n. There are several ways to construct such a space (Ω∗,F ∗,P∗)
and we present two such constructions now.

a) The linear way: One construction, the one that I guess is implicitly done when
saying “consider i.i.d copies X1, X2, . . . of X”, is to take the probability space

(~Ω, ~F , ~P) := (Ω,F ,P)⊗N

with the mappings πn defined by πn(ω) := (ω1, . . . , ωn) ∈ Ωn when ω = (ω1, ω2, . . .) ∈ ΩN.
We then define for every i ≥ 1 the random variable Xi : ~Ω → R by Xi(ω) := X(ωi), so
that Xn := 1

n

∑n
i=1Xi is a random variable on the space ~Ω for every n ≥ 1. Now, the

LLN precisely states that for ~P-almost every ω ∈ ~Ω, we have

lim
n→∞

Xn(ω) = lim
n→∞

1
n

n∑
i=1

X(ωi) = E(X).

If you want to illustrate this result on a computer, then sample N ≥ 1 times independently
your favorite random variableX satisfying E|X| <∞ so as to obtain x1, . . . , xN ∈ R. Then
compute xn = 1

n

∑n
i=1 xi for every n ∈ {1, . . . , N} and plot xn as a function of 1 ≤ n ≤ N ;

see the left hand side of Figure 1 below.

b) The triangular way: Next, consider instead the probability space

(Ω4,F4,P4) :=
∞⊗
n=1

(Ω,F ,P)⊗n,

so that Ω4 = Ω× (Ω×Ω)× (Ω×Ω×Ω)×· · · , and the mappings πn(ω) := (ω(n)
1 , . . . , ω

(n)
n )

where ω = (ω(n)
i : 1 ≤ i ≤ n, n ≥ 1) ∈ Ω4. In this construction, we identified in our mind

the probability space (Ω,F ,P)⊗n with the n-th layer of (Ω4,F4,P4). We then define
the random variables X(n)

i : Ω4 → R by X
(n)
i (ω) := X(ω(n)

i ) and the empirical mean
by Xn := 1

n

∑n
i=1X

(n)
i . At the simulation level, the construction differs from the linear
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Figure 1: Realizations of the empirical mean xn as a function of n for Student random
variables of parameter 2 and N = 50000. The left figure is made the linear way while the
right one is made the triangular way.

way since you now sample independently x1, . . . , xn, store xn, and redo this operation
independently for n ranging from 1 to N ; see the right hand side of Figure 1.

The main difference with the linear way is that the variables (Xn)n≥1 are now inde-
pendent. The two Borel-Cantelli lemmas combined together provide that Xn → E(X) as
n→∞ P4-almost surely if and only if for every ε > 0 we have

∞∑
n=1

P⊗n
(
|Xn − E(X)| > ε

)
<∞. (C)

With a slight abuse of notations, we have used that P4
(
An,ε) = P⊗n

(
An,ε) since the event

An,ε := {|Xn − E(X)| > ε} satisfies πn(An,ε) = An,ε. Now the condition (C) is known to
be equivalent to the condition E(X2) < ∞; this is a result of Hsu & Robbins [1947] for
one implication and Erdös [1949] for the converse implication.

Thus, when E(X) < ∞ but E(X2) = ∞, for instance when X follows a Student t-
distribution of parameter 1 < k ≤ 2, the LLN does not hold true when one embeds the
spaces (Ω,F ,P)⊗n in the triangular way; this is a typical phenomenom for many other
heavy tailed random variables. We illustrate this situation with simulations when X is a
Student random variable of parameter 2 in Figure 1.

Summary. We have seen that, in order to use the (strong) LLN to justify that xn is a
reasonable approximation of E(X), it is important to take care of the way we gathered all
the spaces (Ω,F ,P)⊗n into a large one. But this leads to the following puzzling question:
Imagine the variable X of interest is such that E|X| <∞ and E(X2) =∞. If one obtains
one sample x1, . . . , xn from experiments, then can we just decide that it comes from a
linear construction instead of a triangular one? The LLN thought in the linear way states
that xn → E(X) a.s. as n→∞, but if we think the triangular way then xn 9 E(X) a.s.
as n → ∞. Obviously when we obtain (finite) data there is no way to know which way
applies; this is a matter of belief (or modelisation). And what if we have two independent
samples x1, . . . , xn and x′1, . . . , x′m? Depending on the way we have gathered these spaces,
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the LLN holds true or does not.

Note however that, if E(X2) < ∞, then (C) holds true and the first Borel-Cantelli
lemma yields that the LLN holds true whatever the way you construct the big space
(Ω∗,F ∗,P∗), so that the aforementioned problem is solved anyway. But if E(X2p) =∞ for
some p ≥ 1 then approximating E(Xp) by empirical means leads to the same problematic
dichotomy.

The other ways? Both linear and triangular ways are in fact two examples of projective
limits of probability spaces. As a matter of fact, the existence of a space (Ω∗,F ∗,P∗) is
equivalent to the existence of a family of measurable mappings πn,m : (Ω,F ,P)⊗m →
(Ω,F ,P)⊗n satisfying for every n ≤ m ≤ p the compatibility relations πn,m ◦ πm,p = πn,p
and πm,m = id and furthermore P⊗m ◦ π−1

n,m = P⊗n; and there are many ways to do so.
The triangular way is the worst case of such projective limits in the sense that one can
always embed a projective limit as a restriction of this one. But which projective limit
leads to a good old (strong) LLN when E|X| <∞ but E|X|1+δ =∞ for some 0 < δ < 1?

One way to solve this conceptual problem. After all, one may decide that the
notion of convergence of random variables in the almost sure sense is a degenerated notion
of convergence, at least from an application perspective. Another hint from the theoretical
side is that the almost sure convergence is not metrizable, and thus in a sense not a natural
notion of convergence. We may then come back to the weaker notion of convergence in
probability, since it has the advantage that it does not require to embed all the random
variables in the same probability space and thus make the previous puzzling (at least to
me) discussion unproblematic. In particular concentration inequalities become even more
attractive for applications. This would however rules out classical notions of statistics
such as the one of consistent estimators.

Beyond independence. To make a good approximation of E(X) by its empirical mean
xn, we used the assumption of independence to justify that the data sample is sufficiently
representative of all possible behaviors of the random variable X; the famous theorem
known as the LLN, when it holds, provides the theoretical landmark to justify that claim.
There are however other notions of being sufficiently representative as one can find in
dynamical systems, such as Markov chains or stationary time series, where the theoretical
guaranties are provided by ergodic theorem(s), see any elementary textbook on that subjet.
More recently, it has been understood that one can also find strongly correlated random
variables that explore even better the typical states of a random phenomenon, such as
determinantal point processes, see Bardenet & Hardy [2020].
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